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1 Introduction

The issue of predicting equity returns is one of the most widely discussed topics in fi-

nancial economics (see Campbell (2007) for a recent survey article). In-sample, numer-

ous studies find evidence of predictability (see, for example, Stambaugh (1999), Ang

and Bekaert (2007), Lettau and Van Nieuwerburgh (2008) and Pastor and Stambaugh

(2009b)). Out-of-sample, however, little consensus exists on the fundamental questions

of whether predictability exists and which variables have the best predictive performance

(see, for example, Goyal and Welch (2008), Campbell and Thompson (2008), Cooper and

Gulen (2006) and Rapach, Strauss, and Zhou (2009)). Given the conflicting points of

view in the literature, Spiegel (2008) asks whether academics can “produce an empirical

model that allows for economic changes over time that is also capable of determining the

‘right’parameter values in time to help investors?” This is precisely the question that we

address in this paper.

The literature agrees that parameter instability (i.e., time-variation in coefficients) rep-

resents a major challenge and that it might influence many of the results in the literature.1

Bossaerts and Hillion (1999) state, for example, that “The poor external validity of the

prediction models that formal model selection criteria chose indicates model nonstation-

arity: the parameters of the best prediction model change over time.” Similarly, Cremers

1There are several reasons coefficients might vary over time, e.g., due to changes in regulatory condi-
tions, in market sentiments, in monetary policies, in the institutional framework or in macroeconomic inter-
relations. Barsky (1989) documents time-varying stock-bond correlations. Dimson, Marsh, and Staunton
(2002) present empirical evidence on time-varying correlations between various economic variables. Mc-
Queen and Roley (1993) and Boyd, Hu, and Jagannathan (2005) find that the incorporation of news into
stock prices varies with the business cycle. Veldkamp (2005) and Van Nieuwerburgh and Veldkamp (2006),
among others, relate learning asymmetries and the flow of information to the business cycle.
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(2002) claims in his conclusion that his model is limited by the assumption of parameter

stability. Ang and Bekaert (2007) test for time variation in coefficients by splitting their

entire sample into different sub-periods. They clearly document the time-varying pattern

of coefficients and find, for example, that the coefficient for the dividend yield is twice

as large if estimated from a sample that excludes the 1990s as it is if estimated from the

entire sample.2

The literature, however, is inconclusive about the true degree of time-variation in co-

efficients, and, despite the agreement on the issue, there is lack of systematic evidence.

We identify the following important questions that have not been addressed in the liter-

ature and that we address in this paper: What degree of time-variation is supported by

the data? How important is the issue of parameter instability (e.g., relative to the issue of

choosing the right predictive variables)? By how much do current results (e.g., on out-of-

sample predictability and the importance of individual predictive variables) change once

parameter instability is taken into account?

We analyze these questions by estimating predictive regressions for S&P 500 returns

that explicitly allow for time-variation of regression coefficients. For this purpose we

apply a Bayesian econometric method3 that enables us to model time-varying coefficients

that are subject to random shocks. The two dimensions of model uncertainty— the choice

2Most existing papers in equity return prediction use rolling window regressions and/or perform sub-
period investigations to take care of time-varying coefficients. Both approaches are ad-hoc and depend on
exogenous parameters (like the window length or the dates of sub-periods) that, in many cases, lack both
economic and statistical motivation.

3See, for example, Avramov (2002), Cremers (2002), Pastor (2000), Wachter and Warusawitharana
(2007) and Johannes, Korteweg, and Polson (2009) for recent applications of Bayesian econometrics and
inference in asset pricing.
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of predictors and the degree of coefficients’ time-variation— are addressed in a consistent

manner within a Bayesian model averaging approach (see Raftery, Madigan, and Hoeting

(1997) for technical details and Avramov (2002) and Cremers (2002) for applications to

return prediction).

There is a stream of literature that addresses the issue of parameter instability by esti-

mating regime-switching models and by searching for structural breaks in the predictive

relationship between equity returns and explanatory variables. Pastor and Stambaugh

(2001) and Kim, Morley, and Nelson (2005) use Bayesian econometrics to identify struc-

tural breaks in equity premia. Both papers report that they identify empirical evidence of

the existence of structural breaks. They differ quite considerably, however, in the timing of

the breaks. Viceira (1997) is to our knowledge the first to search for structural changes in

predictive relationships, but does not find evidence of structural breaks in the relationship

between the dividend yield and equity returns. Paye and Timmermann (2006), in contrast,

identify several structural breaks in the coefficients of state variables such as the lagged

dividend yield or the term spread. All of these studies focus on in-sample predictability

and ignore the question of whether an investor would have been able to detect these regime

shifts in real-time (i.e., out-of-sample). Lettau and Van Nieuwerburgh (2008) represent a

notable exception as they also perform out-of-sample tests. They conclude that regime-

shifting models perform very poorly out-of-sample because of unreliable estimates of the

timing of breaks and of the size of the shift.

We differ from these papers because we do not assume, ex ante, that the time variation

in coefficients follows a step function. In contrast, the methodology proposed in this paper
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allows for gradual changes of coefficients. The methodology is also simple and parsimo-

nious enough to enable us to evaluate out-of-sample predictability4 for a comprehensive

set of predictive variables. As shown in our empirical analysis, models with gradually

varying coefficients are strongly supported by the data.5

Using monthly returns of the S&P 500 from May 1937 to December 2002, we com-

pare the predictive out-of-sample performance (using statistical and economic measures)

of models with time-varying coefficients to two benchmark models: (i) regressions with

constant coefficients, and (ii) the unconditional mean of past returns, which constitutes

the no-predictability benchmark.6 Our most important result is that we find strong and

consistent empirical support for models with time-varying coefficients. These models

significantly outperform the two benchmark models across different time periods as far

as prediction accuracy is concerned. This gain in prediction accuracy is also important in

economic terms resulting in consistent utility gains between 1.8 and 5.8% p.a. for differ-

ent time periods, relative to an investor using the historic mean. In comparison, investors

4We define out-of-sample in a strict sense; i.e., all results reported and discussed in this paper are based
on predictions that an investor could calculate and use in real-time (without knowing the full sample).

5Note that there is an extensive literature (see Jostova and Philipov (2005) for a recent paper) that focuses
on models with dynamic (i.e., time-varying) beta, which is to some extent related to our work. However,
these papers condition stock market betas on observables, while we allow for time-varying coefficients when
regressing an equity market index on a set of predictive variables. Another stream of literature that is to a
lesser extent related to our paper is the one focussing on portfolio selection under uncertainty. Kandel and
Stambaugh (1996), Barberis (2000), and Xia (2001) explicitly take into account parameter uncertainty and
evaluate the influence of return predictability on portfolio selection using Bayesian methods. MacKinlay
and Pastor (2000), Pastor (2000), and Pastor and Stambaugh (2000) model the impact of prior mispricing
uncertainty in asset pricing models on portfolio choice. Pettenuzzo and Timmermann (2005) address the
issue of model instability (i.e., structural breaks in predictive relationships) and document that it can have
a larger impact on optimal asset allocation than other sources of risk such as uncertainty in parameter
estimation.

6The benchmark models with constant coefficients used in the paper are equal to OLS regressions with
an extending window. We are aware that, in the literature, regressions with constant coefficients use rolling
windows and thus mimic time-varying coefficients in an ad-hoc way. The methodology proposed in this
paper, in contrast, accounts for time-varying coefficients in a systematic and statistically consistent way.

5



using the predictions of models with constant coefficients realize a utility gain of .2%

only in one sub-period (i.e., 1965 to 2002) and utility losses between -1.9% and -5.8%

in all other periods. The findings of other researchers put these results in further per-

spective: following the same approach to calculating utility gains and comparable data

sets, Rapach, Strauss, and Zhou (2009) find utility gains in the order of .5% to 1.5%, and

Campbell and Thompson (2008) report maximum utility gains of .3%.

Most interestingly, we find a strong relationship between out-of-sample predictability

and the business cycle. Although we find evidence of predictability during recessions

as well as during expansions (in contrast to Henkel, Martin, and Nardari (2008) who

do not find any evidence of in-sample predictability during expansions), the evidence

is much stronger during recessions. In general, models with time-varying coefficients

generate return predictions that match business cycle related patterns implied by asset

pricing theory (e.g., Campbell and Cochrane (1999)) very well. On average, predicted

equity risk premia are negative at the beginning of and increase during a recession (and

peak around the trough). During expansions, predicted risk premia decrease and reach

their lowest levels around the peak of the business cycle. Finally, an investor who relies

on these predictions times the market very well, reducing her exposure around the peak

of the business cycle and moving back into the market before the trough.

In the next step we analyze the models with time-varying coefficients in more detail

to get a better understanding of the sources of their outperformance. Specifically, we

decompose prediction uncertainty into four components, (i) the observational variance

(i.e., the variance assigned to the random disturbance term in the predictive relationship),
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(ii) the estimation uncertainty in coefficients, (iii) the model uncertainty with respect to

the choice of predictive variables (see Avramov (2002) and Cremers (2002)), and (iv) the

model uncertainty with respect to the time-variation in coefficients. Empirically, we find

that the first two sources are most important, as expected. The two dimensions of model

uncertainty are, however, non-negligible, especially when the stock market is under stress

(e.g., during the oil price shock in the 70s).

Finally, we investigate the importance of individual predictive variables within the

models with time-varying coefficients. We find that the relative valuation of high- and

low-beta stocks (i.e., the cross-sectional premium) plays a dominant role among our set

of predictive variables. We also find that the dividend yield receives considerable em-

pirical support. Even more importantly, we document that, in the case of the dividend

yield, our model with time-varying coefficients is able to learn the structural break due

to the initiation of SEC rule 10b-18 in November 19827 — in contrast to constant coef-

ficients or even regime-switching models (see Goyal and Welch (2008) and Lettau and

Van Nieuwerburgh (2008)). Thus, while previous studies report a steady decline of the

importance of the dividend yield as a predictive variable during the 80s and 90s, we doc-

ument an increase.

The paper is structured as follows. Section 2 presents the empirical methodology.

Section 3 describes the variables used in the empirical study. Section 4 reports empirical

results and discusses their implications. Section 5 concludes.

7This rule enabled firms to legally buy back shares under certain circumstances (see Grullon and
Michaely (2002) for details).
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2 Prediction Models with Time-Varying Coefficients

Like the vast majority of papers on return prediction (see, for example, Pesaran and Tim-

mermann (1995), Bossaerts and Hillion (1999), Avramov (2002), Cremers (2002), Goyal

and Welch (2008), and Ang and Bekaert (2007)), we assume a linear relationship between

predictive variables (chosen from a set of k candidate variables, including a constant) and

the dependent variable, i.e., the excess return r of some asset. However, while these papers

assume that the unobservable regression coefficients θ are constant over time, we model

the coefficients in our dynamic linear models to be time-varying (see Section 2.1). An

important contribution of our paper is to evaluate whether the data supports time-varying

coefficients or whether it confirms the constant coefficient paradigm. For each degree of

time-variation of coefficients, we estimate the 2k− 1 dynamic linear models that result

from all possible combinations of predictive variables. Then, we use a Bayesian model

selection criterion to assign posterior probability weights across individual models that

differ in the selected variables and degree of time-variation (similar to Avramov (2002)

and Cremers (2002)). Finally, we use these posterior probabilities to determine an average

prediction model (see Section 2.2).

The goal of this econometric approach is to provide a flexible prediction framework

that explicitly accounts for the different sources of uncertainty: uncertainty in the choice

of predictive variables, uncertainty in the estimation of coefficients, uncertainty in the

degree of time-variation of the regression coefficients, and the general disturbance term.

In Section 2.1 we focus on outlining the characteristics of an individual dynamic linear
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prediction model (i.e., for a given choice of predictive variables), and in Section 2.2 we

discuss the Bayesian model selection approach.

2.1 Dynamic Linear Models

In this section we introduce dynamic linear models (according to West and Harrison

(1997)) that explicitly allow for a time-varying nature of the linear relationship between

the asset return rt+1 over the interval (t, t + 1] and the vector Xt of realizations of the

explanatory variables observed at time t.8 More specifically, we estimate models of the

form

rt+1 = X ′t θt + vt+1, v∼ N(0,V ) (observation equation), (1)

θt = θt−1 +ωt ω∼ N(0,Wt) (system equation). (2)

The vector θt consists of unobservable, time-varying regression coefficients, and the ob-

servational disturbance v is assumed to be normally distributed with mean 0 and constant

but unknown variance V . In what follows we call V the observational variance. While

Equation (2) states that these coefficients are exposed to random shocks ω that are jointly

normal (with mean 0 and variance matrix Wt), we do not assume systematic movements

8We are performing an out-of-sample analysis, where out-of-sample is to be interpreted in a strict sense;
i.e., for predicting the return at time t +1, we use only information that is available at or before time t. This
will be made more precise in the following paragraphs when we define information sets on which estimates
are conditioned.

Observable variables have a subscript that indicates the time at which they are known. When speaking
about beliefs regarding non-observable variables, like the regression coefficients and the variance V , we
state the information set on which these beliefs are conditioned.
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in θ.9 We are aware that Equation (2) implies that theoretically coefficients might drift

to arbitrarily high values, hence causing returns to be non-stationary. This simplifying

assumption is made to keep the model tractable as a multivariate model. The structure in

the dynamics of the coefficients is fed into the estimation by new observations which arise

at a monthly frequency in our application. As long as Equation (2) is thought to apply for

a finite period of time and not forever, this specification should be safe (see also Primiceri

(2005)). Any assumption on the coefficients’ dynamics beyond Equation (2) would either

be an ad-hoc constraint or require a drastic reduction of dimensionality, both of which are

undesirable.

If the system variance matrix Wt equals 0, the regression coefficients θt are constant

over time. Thus, our model nests the specification of constant regression coefficients. If

Wt increases, the intrinsic variability of the regression coefficients θt increases the flexi-

bility of the model. At the same time, however, the out-of-sample prediction variance in-

creases and, consequently, reduces the precision of the prediction. The specific structure

we impose on Wt and how we estimate the magnitude of time variation of the underlying

coefficients will be explained below.

Let Dt = [rt ,rt−1, ...,Xt ,Xt−1, ...,Priorst=0] denote the information set available at time

t. This information set contains all returns, all corresponding realizations of the predic-

tive variables up to time t and our initial time zero choice of priors regarding θ and V . In

Appendix A.1 we will describe in detail how, at some arbitrary time t +1, the observation

of a new return realization leads to an update of the estimated system coefficients and the

9See Primiceri (2005) and Cogley and Sargent (2003) for a similar model specification with an applica-
tion to monetary policy and Brown, Song, and McGillivray (1997) for an application to house prices.
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estimated observational variance. The essential result is that using a normally distributed

prior for the system coefficients θ0 and an inverse-gamma distributed prior for the obser-

vational variance V leads to a fully conjugate Bayesian analysis, which ensures that prior

and posterior distributions come from the same family of distributions. For the time t = 0

specification of the prior information we use a natural conjugate g-prior specification (see,

e.g., Zellner (1986); this type of prior was, for example, also used in the study by Cremers

(2002)):

V |D0 ∼ IG
[

1
2
,
1
2

S0

]
, (3)

θ0|D0,V ∼ N
[
0,gS0(X ′X)−1] , (4)

where

S0 =
1

N−1
r′(I−X(X ′X)−1X ′)r. (5)

This is a noninformative prior, which is consistent with the null-hypothesis of no-predictability

and where g serves as the scaling factor that determines the confidence assigned to the

null-hypothesis of no-predictability. Thus, the prior for the coefficient vector θ0|D0 is

centered around zero, and the covariances among coefficients are multiples of the OLS

estimate of the variance in coefficients.

The forecast of the time t +1 return rt+1 (i.e., the predictive density) can be found by

integrating the conditional density of rt+1 over the range of θ and V . It is a Student-t-

distribution, as illustrated by Equation (11) in the Appendix.
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To specify Wt , the system variance matrix, we apply a discount factor approach (West

and Harrison (1997)). This approach relies on the assumption that the variance matrix

Wt of the error term ωt is proportional to the estimation variance/covariance matrix of

the coefficients θt |Dt . More precisely, the scaling factor is assumed to be 1−δ

δ
for δ ∈

{δ1,δ2, . . . ,δd} with 0 < δi ≤ 1.

A choice of δ equal to 1 corresponds to Wt = 0, i.e., to the assumption that the re-

gression coefficients are constant over time, similar to the models evaluated in the vast

majority of studies on equity return prediction. Choosing a discount factor δ < 1 ex-

plicitly assumes variability of the underlying regression parameters. As a consequence,

the prediction of one particular dynamic linear model depends not only on the choice of

the predictive variables but also on the choice of δ. Both these choices represent model

uncertainty, which we address in a Bayesian model averaging framework.

2.2 Bayesian Model Selection

The empirical literature on asset price dynamics shows that there is considerable uncer-

tainty about which factors contain significant information for predicting asset returns.

This means that even if we restrict our attention to simple linear models as specified in

(1) and (2), there is a high degree of model uncertainty due to the ex ante choice of the set

of predictive variables Xt used as regressors. Agreeing on k candidate regressors (includ-

ing the constant) alone implies 2k− 1 different possible linear regression models. The

presumed variability in the regression coefficients θt (characterized by the choice of the

discount factor δ) constitutes a further a priori specification choice. Considering a number
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of d different discrete values of δ leads to a total of d · (2k− 1) possible dynamic linear

models.10

The arbitrary choice of one particular model from this substantial pool of possible

models is always debatable. Bayesian model selection (see Avramov (2002) and Cre-

mers (2002)) offers a systematic approach to this problem that tests the reliability of all

d · (2k− 1) models against the observed data. Starting from an uninformed prior, it as-

signs posterior probabilities to each model. However, the determination of the universe of

possible models together with the assumption of the prior probability leaves some room

for discretion. We take a large number of candidate predictive variables and different

values of δ into account. Further, we perform robustness checks with respect to different

assumptions about the prior.

The posterior probability of each of the d ·(2k−1) models is updated month by month

according to Bayes rule; i.e., based on the realized likelihood of the model’s return pre-

diction. Appendix A.2 provides more details on the Bayesian model averaging approach.

The overall average model’s predictive density is then the posterior-probability weighted

average predictive density of all d ·(2k−1) models in our universe. The beauty of this ap-

proach is its flexibility. If we want to analyze, for example, the empirical support for mod-

els including a specific predictive variable or having a certain degree of time-variation, we

simply average across all models with this specific characteristic.

10We assume the same degree of time-variation for all coefficients included in a specific model. The pro-
posed framework would be flexible enough to allow for variable-specific degrees of time-variation. Given
the lack of theoretical predictions for the level of time-variation of individual variables and the enormous
number of degrees of freedom, we have to make this simplifying assumption.
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3 Empirical Study Design

3.1 Data Description

We calibrate and test the proposed methodology using total excess returns of the S&P 500

Index from May 1937 to December 2002. The choice of equity returns and explanatory

variables is guided by previous academic studies and by the goal of ensuring the com-

parability of our results with these studies. In particular, we want to relate our results

to those reported in Goyal and Welch (2008) and, thus, reuse their dataset in our study.11

For the sake of brevity, we include only a short description of the predictive variables here

(see Goyal and Welch (2008) for a more extensive discussion of the data set and the data

sources):

• Dividends: Dividend Yield (dy) is the difference between the log of dividends on

the S&P 500 Index and the log of one-month-lagged prices.

• Earnings: Earnings to Price Ratio (ep) is the difference between the log of earnings

and the log of prices. Dividend Payout Ratio (dpayr) is the difference between the

log of dividends and the log of earnings.

• Variance: As a measure of Stock Variance (svar) the sum of squared daily returns

on the S&P 500 is used.

• Cross-sectional premium: Cross-Sectional Beta Premium (csp) quantifies the rel-

ative valuation of high- and low-beta stocks according to Polk, Thompson, and

11We particularly thank Amit Goyal for providing their dataset.
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Vuolteenaho (2006).12

• Book value: Book to Market Ratio (bmr) is the ratio of book value at the end of

the previous year13 divided by the end-of-month market value, both taken from the

Dow Jones Industrial Average.

• Net issuing activity: Net Equity Expansion (ntis) is the ratio of twelve-month mov-

ing sums of net issues by NYSE listed stocks to the total market capitalization of

NYSE stocks.

• T-bills: T-bill Rate (tbl) is the secondary market rate of 3-month US treasury bills.

• Long-Term Yield: Long-term Government Bond Yields (lty) and Long-term Gov-

ernment Bond Returns (ltr) are the yields and returns of long-term US treasury

bonds, respectively.

• Corporate Credit: Default Return Spread (dfr) is the difference between returns on

long-term corporate bonds and returns on long-term government bonds. Default

Yield Spread (dfy) is the difference between BAA-rated and AAA-rated corporate

bond yields.

• Inflation (inf) is the Consumer Price Index (all urban consumers) from the Bureau

of Labor Statistics, lagged by one additional month.

From the dataset of Goyal and Welch (2008) we exclude the predictive variables “In-

vestment to Capital Ratio”, “Percent Equity Issuing”and “Consumption, Wealth, Income
12The availability of this variable limits our dataset both in early and in later years.
13For the months January and February, the book value is additionally lagged by one year.
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Table 1: Summary Statistics (788 Observations).

Mean Standard Minimum Maximum Median
deviation

dy -3.295 .422 -4.525 -2.406 -3.291
ep -2.650 .402 -3.839 -1.775 -2.674

dpayr -.650 .197 -1.183 .063 -.624
svar .002 .004 .000 .071 .001
csp .000 .002 -.004 .008 -.000
bmr .614 .237 .121 1.207 .617
ntis .018 .015 -.031 .054 .020
tbl .042 .032 .000 .163 .039
lty .057 .030 .018 .148 .056
ltr .005 .024 -.084 .152 .003
dfy .010 .005 .003 .032 .008
dfr .000 .011 -.051 .070 .000
inf .003 .005 -.014 .057 .003

Ratio”, since they are not available at a monthly frequency. “Dividend to Price Ratio”is

excluded from our multivariate study since it is almost perfectly correlated to dy. The

“Term Spread”is also excluded for collinearity reasons since it is the difference between

the variables lty and tbl. Furthermore, we consider a constant term in our predictive

models. Table 1 provides summary statistics of the used data.14

3.2 Parameter Choices

The approach outlined in Section 2 requires the choice of appropriate priors and the se-

lection of adequate values of δ. For the actual implementation, we perform the estimation

14We also performed the empirical analysis on a set of predictive variables proposed by Cremers (2002).
For reasons of brevity, we decided to report only the results based on the Goyal and Welch dataset. Our re-
sults are qualitatively the same for the two datasets. There are, however, potentially interesting quantitative
differences that we might investigate in future work. Detailed results on the Cremers dataset are available
from the authors upon request.
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procedure for a g-prior with g = 50.15 The second choice is about δ, where we use the

following values in our empirical implementation: 1.00, .98, and .96.16 We choose the

values of δ such that we cover the constant case (δ = 1.00), a rather noisy situation where

coefficients are expected to change rapidly (δ = .96), and an intermediate case (δ = .98).

As described in Section 2.1, the effect of δ strictly lower than 1.00 corresponds to an

increase in the variance of the coefficient vector by a factor of 1/δ. If we ignore other

influencing factors on the estimated variance of the coefficient vector, the total effect of δ

will be a 50 percent variance increase within 20 months for δ equal to .98. For δ equal to

.96, a 50 percent increase in variance will be reached twice as fast, in approximately ten

months.

As far as prior probabilities of individual models and model families are concerned,

we start out with an uninformed prior giving equal weight to each individual model (i.e.,

1/(d ·(2k−1)) = 1/(3 ·(214−1))) and each individual δ-value (i.e., 1/3) at the beginning

of the estimation horizon. Therefore, every model and every model family has the same

chance to turn out to be important.17

15We repeat the analysis using a g-prior of ten. Finding our conclusions unchanged after this robustness
check, we omit the results for the sake of brevity.

16Note that we also estimated models with δ equal to .99 and .97. Including these models in the Bayesian
Model Averaging does not change the results notably. In order to keep the discussion simple and the number
of parameters tractable, we focus on the three delta values mentioned in the text.

17To perform a robustness check, we take an even more conservative and skeptical point of view with
respect to the existence of predictability. For this reason we attribute a larger prior probability amounting
to 50% to the no-predictability benchmark; i.e., the model consisting only of a non-time-varying constant.
The remaining models receive equal prior probability amounting to .5 · 1/(d · (2k − 2)). Our results are
robust to this change of prior information. The authors will provide detailed results for this specific case
upon request.
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4 Results

In the result section, we first concentrate on determining whether there is evidence of out-

of-sample predictability and whether including models with time-varying coefficients im-

proves predictability. In addition to statistical tests, we investigate if simple trading strate-

gies would have been able to exploit the observed degree of out-of-sample predictability.

Further, we evaluate the relationship between predictability and the business cycle in or-

der to get a better understanding of the sources of predictability. After documenting that

time-varying coefficients significantly improve prediction quality, we investigate the char-

acteristics of these models in more detail. Finally, we illustrate how our models with

time-varying coefficients adjust using a case study that examines the dividend yield as a

predictive variable before and after release of Rule 10b-18 in November 1982.

4.1 Out-of-Sample Predictability

To test for out-of-sample predictability, we analyze the differences in mean squared pre-

diction errors (MSPE) between the no-predictability benchmark and a predictive model.

The no-predictability benchmark is the unconditional model that neglects the predictive

power of any of the 13 predictive variables and takes the historical long-term average eq-

uity premium as the best prediction for the following month’s premium.18 We find broad

support — over different subsamples, using statistical and economic measures — for the

conclusions that predictive regressions with time-varying coefficients predict market re-

18This no-predictability benchmark model is thus nested in our universe of predictive regressions and
corresponds to the model that includes only the constant as a predictor and assumes that the coefficient of
the constant does not vary over time.
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turns significantly better than the unconditional mean and that they perform significantly

better than regressions with constant coefficients. More specifically, we consider the fol-

lowing different predictive models in this analysis:

• BMA-Model incl. (excl.) TVar-Coeff.: this model represents the Bayesian model av-

erage across all individual models including (excluding) models with time-varying

coefficients.

• Univariate Models incl. (excl.) TVar-Coeff.: These models consider only one pre-

dictive variable at a time. In the cases where we include time-varying coefficients,

we still use Bayesian model averaging to average across models with different as-

sumptions of the degree of time-variation of the coefficient.

• MOST-Model incl. (excl.) TVar-Coeff.: The MOST-Models represent the individ-

ual models that receive most posterior probability — among all individual models

including (excluding) models with time-varying coefficients — at the end of the

month before the evaluation period starts. Then we keep this model specification

(the variable selection and degree of time-variation of the coefficients) constant dur-

ing the evaluation period, but we update the coefficient estimates.

• MEDIAN-Model incl. (excl.) TVar-Coeff.: The MEDIAN-Model represents the

individual model that includes all variables that receive more than 50% poste-

rior probability — among all individual models including (excluding) models with

time-varying coefficients — at the end of the month before the evaluation period

starts. In this case, we keep only the selection of variables constant during the eval-
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uation period. For the MEDIAN-Model including time-varying coefficients, we

use Bayesian model averaging again to average across different degrees of time-

variation.

The motivation to look at univariate models, the MOST-Model and the MEDIAN-Model

is to obtain a cleaner test of the importance of time-varying coefficients. The advantage

of these models in contrast to the BMA-Models is that we fix the selection of variables.

Any performance differences we find for these models between the versions including and

excluding time-varying coefficients can, thus, be unambiguously related to the influence

of time-varying coefficients.

4.1.1 Statistical Evaluation

For each predictive model, Table 2 reports differences in mean squared prediction errors

relative to the no-predictability benchmark. Furthermore, we report p-values of tests that

the reported differences in MSPEs are significantly larger than zero (i.e., implying that

the predictive model predicts more accurately than the benchmark) and that unreported

differences in MSPEs between models including and excluding time-varying coefficients

are significantly larger than zero (last column). We properly account for the fact that these

tests compare models that are nested and, therefore, correct the statistics (the differences

in MSPEs) according to Clark and West (2006). Table 2 consists of four panels that

summarize our results for four different sample periods: 1947+, 1965+, 1976+, and

1988+. This choice of sample periods is mainly driven by issues of comparability to

other studies (especially, Goyal and Welch (2008) and Rapach, Strauss, and Zhou (2009)).
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Furthermore, a common result of recent studies is that the evidence of out-of-sample

predictability is largely driven by a few exceptional return observations. For this reason

two of the sub-periods start immediately after periods of distress, the oil price shock of

1975 and the stock market crash in 1987.

We start with the analysis of the BMA-Model. Only if time-varying coefficients are

considered, the resulting BMA-Model outperforms the no-predictability benchmark sig-

nificantly in all sub-samples (the BMA-Model with constant coefficients succeeds only

in the ”1947+” period).19 Furthermore, the BMA-Model including time-varying coeffi-

cients consistently and significantly improves the performance relative to the BMA-Model

excluding time-varying coefficients (with p-values of 1% or lower across all sample peri-

ods).

Next, we focus on the 13 univariate models nested in the universe of models we con-

sider. We find a significant improvement in prediction accuracy after including time-

varying coefficients in many cases. Univariate models with time-varying coefficients sig-

nificantly outperform the ones with only constant coefficients in 28 out of 52 cases across

all sub-periods.20 Furthermore, in only 2 out of 52 cases the model with constant coef-

ficients tends to predict more accurately (indicated by a p-value that exceeds 50% in the

last column of each table). Relative to the no-predictability benchmark, however, few uni-

variate models perform consistently well. In the case of models excluding time-varying

19The results we find for differences in MSPEs are confirmed when we look at the Bayes Factors,
which represent alternative Bayesian statistics. For the entire data sample from 1937 to 2003, for example,
the weight of the no-predictability benchmark within the BMA-Model including time-varying coefficients
drops from its naive prior of (1/3)(1/16383) = 2.03 · 10−5 to 2.66 · 10−11. This result compares well to
Cremers (2002). Detailed results are available from the authors upon request.

20At a 10% significance level.
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coefficients, not a single univariate model outperforms the no-predictability benchmark

significantly across all sample periods (hence, our results perfectly support the findings

of Goyal and Welch (2008)). If coefficients are also modeled dynamically, we find one

variable that consistently beats the historic average in a univariate framework, namely

csp.

Finally, we further confirm the evidence that time-varying coefficients improve pre-

diction accuracy for individual models by looking at the MOST and MEDIAN-Model.

In both cases, the consideration of time-varying coefficients results in a significant per-

formance enhancement across all sample periods.21 In the case of these two models, the

performance relative to the no-predictability benchmark also increases significantly once

time-varying coefficients are considered. Except for the MEDIAN-Model in the 1988+

sub-sample (p-value of .16), they beat the historic mean consistently. Therefore, these

models seem to represent quite reasonable alternatives to the BMA-Model. Note, how-

ever, that this is not at all the case if coefficients are restricted to be constant.

From these results we conclude that the inclusion of time-varying coefficients dra-

matically improves the out-of-sample predictability — across all model specifications

and across all sub-periods. If time-varying coefficients are considered, the overall best

performing model is the BMA-Model, as it shows the clearest performance advantage

relative to the no-predictability mean. It is followed by the MOST-Model and the uni-

variate model based on csp, which also show consistent, strong, out-of-sample predictive

performance.

21In the case of the MOST-Model, the model with highest posterior probability in December 1946 is a
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Table 2: Statistical Evaluation: This table summarizes the differences in MSPEs (mul-
tiplied by 100) between the no-predictability benchmark and a predictive model. It also
provides the p-values of one-sided tests that the difference is larger than zero. The last
column reports the p-values of one-sided tests that use the corresponding model with con-
stant coefficients as benchmark. Given that we compare prediction quality with respect to
a nested model, we apply the definitions of Clark and West (2006) for the statistics of the
differences of MSPEs.

Sample Period: 1947+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model .0192 .00 .0046 .08 .00
ep .0055 .02 .0026 .04 .12
svar .0004 .41 -.0005 .95 .30
bmr .0031 .21 .0031 .14 .05
tbl .0055 .02 .0033 .08 .01
ltr .0050 .01 .0018 .14 .01
dfy .0035 .02 -.0001 .64 .02
inf .0027 .09 .0009 .16 .18
dy .0044 .01 .0036 .02 .08
dpayr .0027 .17 -.0001 .54 .12
csp .0094 .01 .0052 .02 .01
ntis .0043 .01 .0020 .10 .04
lty .0035 .08 .0025 .13 .06
dfr .0008 .16 -.0005 .81 .02
MOST-Model .0054 .10 .0054 .10 .
MEDIAN-Model .0220 .00 .0028 .22 .00
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Sample Period: 1965+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model .0261 .00 .0039 .11 .00
ep .0067 .04 .0023 .11 .07
svar .0007 .39 -.0007 .94 .29
bmr .0018 .37 .0013 .35 .09
tbl .0063 .05 .0047 .08 .11
ltr .0056 .02 .0036 .06 .14
dfy .0048 .02 -.0003 .79 .02
inf .0029 .15 .0008 .24 .19
dy .0046 .03 .0038 .05 .18
dpayr .0041 .16 .0004 .38 .17
csp .0106 .03 .0048 .03 .08
ntis .0049 .03 .0031 .07 .18
lty .0044 .12 .0035 .15 .13
dfr .0008 .23 -.0003 .65 .08
MOST-Model .0141 .06 .0015 .35 .00
MEDIAN-Model .0018 .02 .0003 .47 .00

Sample Period: 1976+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model .0304 .00 .0038 .18 .00
ep .0018 .21 .0017 .22 .08
svar -.0007 .87 -.0008 .91 .28
bmr -.0006 .61 -.0005 .56 .02
tbl .0015 .31 .0013 .35 .04
ltr .0030 .16 .0030 .16 .49
dfy .0027 .10 -.0000 .54 .10
inf -.0003 .61 -.0002 .57 .66
dy .0018 .26 .0016 .30 .02
dpayr -.0001 .52 -.0002 .58 .31
csp .0097 .04 .0031 .16 .05
ntis .0039 .07 .0037 .08 .22
lty .0005 .43 .0005 .43 .11
dfr .0002 .41 -.0003 .71 .08
MOST-Model .0252 .00 -.0012 .60 .00
MEDIAN-Model .0307 .00 -.0004 .54 .00
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Sample Period: 1988+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model .0210 .08 -.0012 .60 .01
ep .0036 .12 .0036 .13 .05
svar -.0006 .76 -.0007 .76 .30
bmr .0009 .39 -.0006 .57 .06
tbl -.0012 .85 -.0016 .89 .09
ltr .0008 .37 .0008 .37 .34
dfy .0006 .27 -.0003 .80 .19
inf -.0005 .70 -.0006 .71 .42
dy .0013 .38 .0007 .44 .01
dpayr -.0018 .92 -.0019 .92 .06
csp .0148 .05 .0029 .18 .05
ntis .0003 .46 .0002 .47 .21
lty -.0007 .81 -.0008 .82 .08
dfr -.0014 .94 -.0010 .91 .97
MOST-Model .0280 .06 .0004 .48 .00
MEDIAN-Model .0134 .16 .0062 .18 .01

4.1.2 Economic Evaluation

So far, we have documented that, statistically speaking, models with time-varying coef-

ficients represent a significant improvement. In a further step, we test whether the iden-

tified levels of out-of-sample predictability of monthly S&P 500 returns are sufficient

such that an investor might rationally use the predicted return (and its estimated variance)

for portfolio optimization (see Kandel and Stambaugh (1996) and Campbell and Thomp-

son (2008)). To test for economic evidence that a trading strategy could have exploited

this degree of out-of-sample predictability in a profitable way, we follow Campbell and

Thompson (2008) and Rapach, Strauss, and Zhou (2009) and consider an investor with

a single-period horizon and mean-variance preferences. We analyze the gain in realized

model with constant coefficients; thus, there is no p-value for the comparison.
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utility of an investor who uses any of the predictive models in comparison to the no-

predictability benchmark.

Table 3 summarizes these results for the same set of predictive models and sample

periods.22 These utility gains very convincingly confirm and even strengthen our previ-

ous results. Overall, the BMA-Model and the MEDIAN-Model show best performance,

i.e., consistently positive and large utility gains, if time-varying coefficients are included.

These utility gains are statistically significant during all evaluation periods except the

1988+ period. The differences, however, between the models including time-varying

coefficients and the ones excluding time-varying coefficients are statistically significant

during all periods (also for the MOST-Model). Regarding univariate models, the inclusion

of time-varying coefficients improves the performance of each individual model across all

sub-periods.23 However, only csp generates positive utility gains consistently across all

sub-periods (only the one during the 1965+ period is significant).

4.2 Return Predictability and the Business Cycle

In the previous section we have documented statistically significant and economically

important levels of predictability for models with time-varying coefficients. In this section

we aim to analyze the sources of predictability in more detail. In particular, we relate

predictability to the business cycle.

22We determine monthly realized mean-variance utility where we use daily S&P 500 returns within a
month to estimate the monthly variance. Average realized utility gains and significance levels are inferred
from these time series. Tests are omitted for the 1947+ period since our set of daily index returns starts only
in 1964 (we use data from Datastream for this purpose).

23The only exceptions are the univariate model based on dfr in sub-period 1988+ and the one based on
inf in sub-period 1976+. Several of these improvements are also statistically significant.
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Table 3: Economic Evaluation: We assume an investor with a single-period horizon,
mean-variance preferences and a relative risk aversion equal to 3. Further we limit the
share invested into the S&P 500 to be between 0% and 150%. The table shows utility
gains p.a. of an investor using any of the predictive models relative to an investor fol-
lowing the no-predictability benchmark. Significance tests are based on the monthly time
series of realized utility gains where daily index returns within a month are used to es-
timate the monthly return variance. Tests are omitted for the 1947+ period since our set
of daily index returns starts only in 1964 (we use data from Datastream for this purpose).
***, ** and * indicate standard significance levels of the utility gain relative to the no-
predictability benchmark. Bold utility gains in columns 3 to 5 indicate that the models
including time-varying coefficients perform significantly better than the models excluding
time-varying coefficients at least at the 10% level.

Models incl. TVar-Coeff. Models excl. TVar-Coeff.
1947+ 1965+ 1976+ 1988+ 1947+ 1965+ 1976+ 1988+

BMA-Model 2.57 5.75*** 4.82*** 1.76 -1.97 .16 -1.87 -5.79
ep -.61 1.07 -1.36 -1.77 -1.60 -.22 -1.40 -1.79
svar -.77 .35 -1.67 -2.95 -1.69 -.46 -1.80 -2.97
bmr -1.74 -.71 -3.67 -3.27 -3.13 -2.07 -3.83 -6.41
tbl -.55 .63 -2.72 -4.04 -1.47 .14 -3.30 -4.66
ltr .38 1.60 -.73 -2.80 -.96 1.14 -.82 -2.89
dfy .01 1.36 -1.01 -2.27 -1.46 -.46 -1.67 -3.12
inf -.23 .74 -2.05 -3.13 -.75 .51 -1.98 -3.14
dy -.77 .74 -2.27 -4.84 -1.47 .38 -2.43 -5.08
dpayr -.82 .36 -2.47 -4.56 -1.81 -.26 -2.58 -4.72
csp .88 2.90* 1.22 2.94 -1.11 1.20 -1.71 -1.98
ntis -.13 1.16 -1.13 -3.15 -1.66 -.05 -1.34 -3.22
lty -1.03 .37 -2.79 -3.82 -1.33 .31 -2.84 -3.88
dfr -.82 .51 -1.38 -3.69 -1.87 -.46 -1.69 -3.41
MOST-Model -2.30 3.55* 4.24** 2.93 -2.30 -2.44 -4.06 -4.36
MEDIAN-Model 2.68 4.04** 4.92** 2.26 -2.87 -3.06 -3.97 -3.31
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4.2.1 Financial Returns and the Real Economy

From a theoretical point of view, Campbell and Cochrane (1999) provide a foundation for

the link between time-varying expected rates of returns and the business cycle. Simply

speaking, the argument is as follows (see Cochrane (2007)): investors have a slow-moving

external habit; if the economy slides into a recession, the risk of falling short of the min-

imum level of consumption increases and investors become more risk averse; thus, the

risk premium of equity has to go up during a recession; in order to make that happen,

stock prices have to decrease at the beginning of a recession. The time-variation in risk

premium is, therefore, linked to the time-variation in investors’ risk aversion.

In this section, we are going to link these theoretical predictions to the empirical re-

sults of our models. Specifically, we expect the estimated risk premium to behave accord-

ing to the dynamics implied by the Campbell and Cochrane (1999) model: it has to be

negative (on a monthly frequency) during the beginning of a recession, increase during

the recession, and be larger at the end of the recession than at the end of the expansion. In

such a framework, predictability would arise if our predictive models are able to antici-

pate the business cycle (see Henkel, Martin, and Nardari (2008) and Rapach, Strauss, and

Zhou (2009) for initial empirical support).

Models with dynamic coefficients should outperform models with constant coeffi-

cients (as we documented for the entire sample in the previous section) if the relationships

between individual predictive variables and the risk premium depend on the business cy-

cle, as well. This link between the business cycle and the time-variation in coefficients can
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be motivated by different economic theories. Veldkamp (2005) and Van Nieuwerburgh

and Veldkamp (2006), among others, relate learning asymmetries caused by a varying

rate of information flow to the business cycle. In these models, the information content

of economic signals varies across the business cycle. Chakley and Lee (1998) offer a

different mechanism to cause the asymmetries in learning by claiming that during reces-

sions the fraction of noise traders increases. McQueen and Roley (1993) and Boyd, Hu,

and Jagannathan (2005) find empirical evidence for these asymmetric learning patterns,

as the incorporation of news into stock prices varies with the business cycle. It is exactly

this variation in learning24 and in the information flow that we try to capture with our

time-varying coefficients.

4.2.2 Predictive Performance Across Business Cycles

We use the NBER dates of peaks and troughs to identify recessions and expansions ex-

post; i.e., this information is not used at any time during the estimation of the predictive

models. It is currently not our goal to predict business cycles. The idea of this analysis

is to see how closely the level of predictability and the dominance of models with time-

varying coefficients is related to the business cycle.

Table 4 summarizes our main two statistics — differences in mean squared prediction

errors (Diff. MSPE) and utility gains — across models for different periods related to the

business cycle. Consistent with other recent papers (Henkel, Martin, and Nardari (2008)

24Theories about learning fit, in general, very nicely into our empirical Bayesian framework, as our
investors basically learn about the coefficients and other parameters over time and update their beliefs every
period.
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and Rapach, Strauss, and Zhou (2009)25), we find significantly stronger evidence for pre-

dictability during recessions than during expansions (third row of Table 4) using both

measures.26 It is interesting to highlight that utility gains relative to the no-predictability

benchmark are huge during recessions. This is primarily because the no-predictability

benchmark is overly optimistic about the monthly equity premium and thus suffers from

severe losses during recessions. Another important result is that the dominance of mod-

els with time-varying coefficients prevails during both recessions and expansions (see

last two columns of Table 4). Finally, we also find statistically significant levels of out-

of-sample predictability during expansions, but only for models including time-varying

coefficients, albeit at a much smaller scale. This result is in contrast to the findings of

Henkel, Martin, and Nardari (2008), who conclude that there is even no in-sample pre-

dictability during expansions using their predictive variables and econometric technique.

In the next step we look more closely at economic turning points; i.e., peaks and

troughs of the business cycle. For this purpose, we split the business cycle into 4 peri-

ods of 3 months each:27 (i) Late Expansion: 3 months before a peak, (ii) Early Reces-

sion: 3 months after a peak, (iii) Late Recession: 3 months before a trough and (iv)

Early Expansion: 3 months after a trough. The last four rows of Table 4 report the

results for these sub-periods. The BMA-Model incl. TVar-Coeff. outperforms the no-

25Henkel, Martin, and Nardari (2008) analyze market return predictability in the G7 countries. In con-
trast to our study, they perform an in-sample analysis, look at only 4 predictive variables and use regime-
switching models. Rapach, Strauss, and Zhou (2009) focus on the US market and analyze basically the
same set of predictive variables as we do. However, they assume constant coefficients and apply a rather
ad-hoc way of averaging across individual predictive models.

26The only exception, as it is not significantly different from zero, is the difference in MSPEs for models
excluding time-varying coefficients.

27Our results are robust to different choices of windows around peaks and troughs.
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Table 4: Business Cycle Analysis: This table summarizes our main statistics across
recessions (123 monthly observations) and expansions (665 monthly observations) and
across 4 business cycle (BC) periods (33 monthly observations per period): Late Expan-
sion: 3 months prior to peak, Early Recession: 3 months after peak, Late Recession: 3
months before trough, Early Expansion: 3 months after trough. The statistics include
differences in mean squared prediction errors relative to the no-predictability benchmark
(Diff. MSPE) and utility gains relative to an investor using the unconditional mean re-
turn (Util. Gain). Significance tests are relative to the no-predictability benchmark except
for the columns labeled “Model Comparison”(in this case, the significance tests is across
models) and the row labeled “Diff.”(in this case, the test is between recessions and ex-
pansions). Significance tests for differences between values of specific statistics across
individual stages of the business cycle are discussed and reported in the text.

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Model Comparison
Diff. MSPE Util. Gain Diff. MSPE Util. Gain Diff. MSPE Util. Gain

Rec. .0600*** 24.967*** .0168** 9.378* .0478*** 15.589***
Exp. .0121** 1.622 .0052 -1.990 .0152*** 3.613**
Diff. -.0479*** -23.345*** -.0116 -11.369**
Late Exp. .0327*** 16.597* .0148 3.841 .0184* 12.756
Early Rec. .1156*** 47.849*** .0707*** 30.543** .0401** 17.306**
Late Rec. .0490** 6.4206 -.0092 -6.810 .0752*** 13.230
Early Exp. .0075 -2.273 -.0039 -8.321* .0266*** 6.048

predictability benchmark significantly for all stages except early Expansion; i.e., shortly

after the trough. Even the BMA-Model excl. TVar-Coeff. shows predictability around the

peak of the business cycle. A closer look at the utility gains relative to an investor using

the no-predictability benchmark reveals that the naive investor performs relatively well

towards the end of a recession and early in an expansion, because of the nearly constant

and high weight on the risky asset. These utility gains, however, do not offset the huge

losses such an investor suffers from during the beginning of a recession.

Figure 1 shows the predicted equity premium (first row) and the equity market weight

of a mean-variance optimizing investor (second row) across peaks and troughs. It shows

that the predictions from the BMA-Model incl. TVar-Coeff. fit the theoretical pattern im-
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plied by Campbell and Cochrane (1999) very well: in Early Recession, predicted returns

are on average negative28 (the difference between predicted returns in Late Expansion and

in Early Recession is statistically significant). Towards the end of the recession, however,

the predicted risk premium increases and peaks in Late Recession, reflecting the fact that

investors become more risk-averse during a recession. During expansion, predicted risk

premia decrease again; hence, the difference between the expected risk premia in Late

Expansion and in Late Recession is statistically significant. In contrast, the predictions

from BMA-Model excl. TVar-Coeff. do not match this pattern at all. In this case, the ex-

pected risk premium stays at a relatively constant, positive but low level during the entire

recession. We conclude that these predictions are, thus, less economically meaningful.

As far as portfolio weights are concerned (second row of illustrations in Figure 1),

we find that the asset allocation strategy of an investor relying on the BMA-Model incl.

TVar-Coeff. seems to time the market very well. On average, the investor withdraws

from the market quickly at the beginning of a recession (the drop in portfolio weight is

statistically significant), and then moves back in (even more than before) towards the end

of it. In contrast, an investor using predictions from the BMA-Model excl. TVar-Coeff.

pulls out of the market after a peak but completely fails to move into the market again

towards the end of the recession.

Our model is very nicely consistent with the implications of asset pricing models that

use time-varying risk aversion to generate time-varying risk premia (e.g., see Campbell

28Although one would expect the long-term equity premium always to be positive, the short-term pre-
mium could be negative in a world with time-varying equity premia. In a business cycle model, prices have
to drop in the beginning of the recession resulting in short-term negative expected returns (see also Pastor
and Stambaugh (2009b)).
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and Cochrane (1999)). This agreement between our empirical predictions and asset pric-

ing theory suggests the notion that time-varying risk aversion along the business cycle

is related to the existence of out-of-sample predictability. Thus, we conclude that pre-

dictability reflects business cycle risk rather than market inefficiency. Therefore, it is also

not surprising that predictability is not driven away over time. This view is somewhat

supported by the literature on fund manager skills that finds that fund managers perform

statistically and economically better during recessions than during expansions (see, for

example, Kacperczyk, Van Nieuwerburgh, and Veldkamp (2009)). Thus, we conjecture

that fund managers actively exploit the higher levels of market return predictability during

recessions, but they are not able to eliminate it because of the risks involved.

4.3 Characterization of the BMA-Model

The previous section described empirical results that confirm that the BMA-Model in-

cluding time-varying coefficients performs consistently well at predicting market returns.

Given that this model is a fairly sophisticated combination of many individual models, we

want to shed some more light on it and evaluate its characteristics in more detail.

4.3.1 Variance Decomposition and the Degree of Time-Variation

As a first step, we perform a variance decomposition. Since the Bayesian model averaging

approach keeps track of all possible sources of uncertainty regarding the prediction, we
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Figure 1: Equity Premium Predictions and Portfolio Weights Around Peaks and
Troughs: The two graphs in the first row show the predicted monthly equity premium
using BMA-Model incl. TVar-Coeff. (solid line) and BMA-Model excl. TVar-Coeff.
(long dashed line). The two graphs in the second row show the portfolio weights of
a mean-variance optimizing investor who uses forecasts from BMA-Model incl. TVar-
Coeff. (solid line), uses forecasts from BMA-Model excl. TVar-Coeff. (long dashed line),
or does not believe in predictability and uses the historic mean and standard deviation
(short dashed line). Each graph shows averages across the 11 recessions of our sample
period.
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can decompose the prediction variance of the return into four parts:

Var(rt+1) = ∑
j

[
∑

i
(St |Mi,δ j|Dt)P(Mi|δ j,Dt)

]
P(δ j|Dt)+

∑
j

[
∑

i
(X ′t RtXt |Mi,δ j,Dt)P(Mi|δ j,Dt)

]
P(δ j|Dt)+

∑
j

[
∑

i
(r̂ j

t+1,i− r̂ j
t+1)

2P(Mi|δ j,Dt)

]
P(δ j|Dt)+

∑
j
(r̂ j

t+1− r̂t+1)2P(δ j|Dt). (6)

Equation (6) can be deduced by decomposing the variance of the random variable r step

by step into expected in-sample variances and inter-sample variances.29

The individual terms of (6) can be interpreted in a very intuitive way. The first term is

the expected observational variance; i.e., the variance assigned to the random disturbance

term. The second term states the expected variance from errors in the estimation of the

coefficient vector. We will refer to it as estimation uncertainty. Both the third and the

fourth term characterize model uncertainty. The third term measures model uncertainty

with respect to variable selection, and the fourth term measures model uncertainty with

respect to the time variability of the regression coefficients.

In Figure 2, we plot the relative weights of these components of prediction variance

over time. Panel A shows these components as a fraction of total variance. The dominant

source of uncertainty is observational variance. This is not surprising, since over short

29Starting with the decomposition with respect to different values of δ, we can write Var(r) =
Eδ(Var(r|δ))+ Varδ(E(r|δ)), where Eδ and Varδ denote the expected value and the variance with respect
to δ. The term Eδ(Var(r|δ)) represents the first three terms in Equation (6). The term Varδ(E(r|δ)) is
the last term in (6). In a second step, the term Eδ(Var(r|δ)) can be further decomposed into Var(r|δ) =
EM(Var(r|M,δ))+VarM(E(r|M,δ)), which splits term three of Equation (6) from the remainder. The final
variance decomposition as shown in (6) follows from simple rearrangements.
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Figure 2: Sources of Prediction Variance.

Panel A: Including the observational variance.

Panel B: Excluding the observational variance.
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prediction horizons, random fluctuations are expected to dominate the uncertainty in the

predicted trend component.

Therefore, Panel B masks out observational variance and focuses only on the other

three components. In most periods, the estimation uncertainty in coefficients captures

more than half of the remaining variance.30 In periods of stress, model uncertainty peaks

(e.g., in a couple of periods in the 1970s due to oil price shocks, and around 1990 due

to the Iraq-Kuwait war). Uncertainty about the correct degree of time-variation (δ) is, in

general, relatively low except for individual periods (e.g., in the mid-50s, in the end of the

80s, and in the beginning of the 90s).

Figure 2 shows that there is little uncertainty about the degree of time-variation, but

it does not reveal the empirically estimated degree of time-variation. Given the results

discussed before, we expect to find that models with time-varying coefficients play an im-

portant role within the BMA-Model. To address this question, we plot the total posterior

probability of all models for each value of δ considered (see Figure 3).

Figure 3 draws an unambiguous picture. Models with moderately time-varying co-

efficients (i.e., δ = .98) consistently accumulate more than 80% of posterior probability.

Constant coefficient models (i.e., δ = 1.0) perform well over the first 15 years but lose

support from the data in and after 1955. Note that the cumulative posterior probability

of constant coefficient models basically drops to 0 and stays there from 1974 onwards.

In contrast, the very dynamic models with δ = .96 play no role during the 50s and 60s

30The fact that parameter uncertainty is more important than model uncertainty most of the time fits well
with findings documented in Pastor and Stambaugh (1999). Interestingly, they find the same relationship
for cost of capital estimations on the firm level, while the results presented here are for cost of capital on
the market level.
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Figure 3: Sum of Posterior Probabilities of Models with a Given δ. For the BMA-
Model including time-varying coefficients (BMA-Model incl. TVar-Coeff.), this figure re-
ports cumulative posterior probabilities of models with a specific degree of time-variation
of coefficients.

but receive considerable support over some later time periods: especially notable is the

short blip following the stock market crash in October 1987. Given the dominance of the

models with δ = .98 in Figure 3, it is not surprising that we find little uncertainty about

the degree of time-variation in Figure 2.

Similarly, Figure 4 shows the posterior probability weighted average value of δ; i.e.

the estimated degree of time-variation in coefficients across time.31 We see that the de-

gree of time-variation itself changes over time: periods with relatively stable estimates of

31Note that in order to obtain a more precise picture of the average delta, we re-estimated the BMA model
with a set of five different values of δ, i.e., δ ∈ {.96, .97, .98, .99,1.00}. To perform a robustness check, we
recalculated mean squared prediction errors and utility gains from this more precise model and found our
previously reported and discussed results basically unchanged.
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Figure 4: Posterior Probability Weighted Average δ (i.e., degree of time-variation).
For the BMA-Model including time-varying coefficients, this figure reports the posterior
probability weighted average degree of time-variation. In order to get a more precise
estimate of this average δ we consider five specific delta values in the estimation, namely
δ ∈ {.96, .97, .98, .99,1.00}.

δ (e.g., from the mid-50s to the mid-70s) alternate with periods showing sharp changes,

mostly steep drops. These sharp drops in average δ (i.e., increases in the estimated vari-

ability of the regression coefficients) can in many cases be associated with crises like

the oil price shock of the mid-70s or the stock market crash of 1987. A potential fu-

ture research question is to more precisely relate the dynamics of the estimated degree

of time-variation to the economic cycle or other economic events (see Henkel, Martin,

and Nardari (2008) for evidence that parameter instability is related to cyclical economic

conditions).
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4.3.2 Analysis of Individual Coefficients and Models

Another interesting analysis is to characterize the top performing models. Pesaran and

Timmermann (1995) and Bossaerts and Hillion (1999), for example, select top performing

models according to various statistical measures for their prediction analysis and report

a large amount of variability among these top models. For this purpose, we focus on

the Top 10 individual models within the BMA-Model excluding time-varying coefficients

as well as within the BMA-Model including time-varying coefficients. Figure 5 shows

how much posterior probability the Top 10 models receive over time. In the case of the

BMA-Model excluding time-varying coefficients, the posterior probability assigned to

the Top 10 models does not account for more than 7 percent at the end of the sample

period and never exceeds 16 percent. In contrast, the posterior probability assigned to the

Top 10 models of the BMA-Model including time-varying coefficients increases to more

than 80 percent over the sample period. Consequently, in the case of the BMA-Model

excluding time-varying coefficients, the Top 10 individual models are less distinct from

other individual models.

This is a potentially important insight, as it provides an explanation for the erratic

behavior of the best models reported in the literature to date. Pesaran and Timmermann

(1995) and Bossaerts and Hillion (1999), among others, report that their individual top

models changed considerably over time. They admit that their analysis suffers from vari-

ability in the top models’ specifications. Our analysis documents precisely this behavior—

many different model specifications with similar posterior probabilities—for models as-
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Figure 5: Sum of Posterior Probabilities of Top 10 Models. This figure reports the sum
of the posterior probabilities of the Top 10 Models (i.e., the 10 models whose posterior
probabilities are largest at a given point in time) within two groups of models: (1) the
BMA-Model including time-varying coefficients and (2) the BMA-Model excluding time-
varying coefficients.

suming constant coefficients. However, we show that this “stationarity issue” can be

largely resolved by allowing coefficients to vary over time.

In the next step, we evaluate the importance of individual predictive variables in the

BMA-Models. For each variable, we use the sum of posterior probabilities of all models

that include this variable as our measure of importance. This measure is the natural choice

in a Bayesian framework and allows us to evaluate ex-post how much support individual

variables receive from the data. The limitation of this measure is, however, that it does

not directly analyze the predictive power of individual variables.

41



Table 5 evaluates this measure of importance at four points in time (Dec. 1964, Dec.

1975, Dec. 1987, Jan. 2003) and shows a few interesting results. First, the dividend yield,

the cross-sectional premium and the book to market ratio consistently receive the highest

posterior probabilities. These variables receive weights that are larger than 50% (i.e., the

unconditional prior value) across all four points in time (in most cases, their posterior

probability exceeds 90%). Second, in contrast to the previous result, we find that no

single variable consistently exceeds the prior of 50% if we limit our analysis to the BMA-

Model excluding time-varying coefficients. The cross-sectional premium performs best

and falls short only of the unconditional prior in December 1975 with a value of 49%.

Together, these results further emphasize the previous observation that the assumption of

constant coefficients results in instability of models, i.e., in instability of the assessment

of importance of predictive variables.

Putting this section’s results together, we conclude that the BMA-Model including

time-varying coefficients is more successful in identifying important variables and mod-

els (i.e., combinations of variables) than the BMA-Model excluding time-varying coef-

ficients. We think that a possible explanation for this observation is that models with

constant coefficients flip between individual variables or models to compensate for the

lack of variation in the coefficients.

4.4 Case Study: The Dividend Yield as a Predictive Variable

In this section, we perform a case study. We focus on the dividend yield as a predictive

variable and analyze how its predictive performance changed due to release of Rule 10b-

42



Table 5: Importance of Individual Variables: This table measures the sum of posterior
probabilities across all models that include a specific explanatory variable at 4 points in
time. Columns 2 to 5 cover all models, and columns 6 to 9 focus on models with constant
coefficients. See section 3.1 for the definition of the variables and their abbreviations.

Models incl. TVar-Coeff. Models excl. TVar-Coeff.
1964.12 1975.12 1987.12 2003.1 1964.12 1975.12 1987.12 2003.1

dy .94 .80 .93 .91 .72 .40 .31 .25
ep .25 .16 .46 .77 .29 .30 .27 .25
dpayr .38 .21 .58 .78 .32 .45 .46 .22
svar .17 .07 .01 .01 .22 .22 .44 .25
csp .99 1.00 1.00 1.00 .71 .49 .55 .89
bmr 1.00 1.00 1.00 1.00 .98 .96 .96 .39
ntis .25 .08 .13 .40 .35 .31 .83 .69
tbl .37 .26 .95 .71 .38 .34 .44 .37
lty .41 .70 .08 .37 .39 .39 .27 .41
ltr .27 .21 .19 .12 .30 .50 .59 .63
dfy .12 .06 .01 .18 .39 .50 .32 .21
dfr .06 .02 .13 .03 .21 .16 .43 .28
inf .31 .19 .07 .03 .49 .71 .47 .33

18 by the SEC in November 1982. We do this case study for two important reasons: (i) to

discuss the adaptation of dynamic linear models to changes in the economic relationships

(in this case to changes in the regulatory framework), and (ii) to compare the performance

of dynamic linear models to regime-switching models. Rule 10b-18 facilitated share re-

purchases under certain circumstances (see Grullon and Michaely (2002) for details on

Rule 10b-18). As a consequence of this change in regulation, individual firms’ dividend

and payout policies adjusted, resulting in a significant reduction in aggregate dividend

yield combined with an apparent change in the information content of dividend payments

(see Boudoukh, Michaely, Richardson, and Roberts (2007) for empirical evidence).

Lettau and Van Nieuwerburgh (2008) provide strong in-sample evidence for regime

shifts in the long-term mean of the dividend-price ratio. Allowing for one regime shift in
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the mean dividend yield, their in-sample analysis dates the shift to the year 1991. If two

shifts are allowed, these shifts are dated to the years 1954 and 1994. The authors fail, how-

ever, to link these dates to specific economic events causing these regime shifts. While

most regime-shifting models concentrate only on ex-post predictability and in-sample de-

tection of shifts, Lettau and Van Nieuwerburgh (2008) also explicitly analyze the out-of

sample properties of their regime-shifting model. They find poor predictive quality which

is dominated by their no-predictability benchmark. This is so because of non-reliable

real-time results in (i) dating regime shifts and more severely (ii) the estimation of the

size of the shift in the steady state. That is, they find that regime-shifting models have

considerable difficulty in learning out-of-sample whether a shift has occurred recently.

How, in contrast, does our methodology perform in detecting and learning this regula-

tory change in real-time? The BMA-Model including time-varying coefficients does very

well in handling the regime shift. Figure 6 shows the dividend yield’s importance over

time, measured as the sum of the posterior probabilities assigned to individual predictive

models including the dividend yield.32 Two different models are compared: the BMA-

Model including time-varying coefficients, and the BMA-Model excluding time-varying

coefficients. The vertical line in the graph indicates the date of the release of rule 10b-18.

The BMA-Model including time-varying coefficients views the dividend yield as a

consistently important variable. In a reaction to the structural change caused by the re-

lease of rule 10b-18, the BMA-Model including time-varying coefficients increases the

32We decided to analyze the importance of models including the dividend yield because this captures the
importance of the economic link between the dividend yield and the risk premium. Alternatively, one could
also analyze the average coefficient of the dividend yield. Qualitatively, this would yield a similar result.
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overall weight of the dividend yield. This reaction is immediate and suggests that the

information content of dividend payments increased, although overall dividend payments

declined. This is so because (i) the dynamic linear models adapt their coefficients to the

new situation and (ii) due to Bayesian learning, models with good out-of-sample perfor-

mance receive (step by step) higher weights.

In contrast, models with constant coefficients (BMA-Model excluding time-varying

coefficients) cannot properly handle the update in the regulatory framework that obviously

changed the predictive impact of the dividend yield on equity returns. Since constant-

coefficients models are, by definition, only slowly adapting estimated sensitivities, the

only possible reaction to bad calibration is that the BMA procedure weights down models

that include the dividend yield as a predictor (the importance of the dividend yield as

a predictor drops by 19.9% in March 1983). This pattern can also explain the results

reported in Goyal and Welch (2008) and Ang and Bekaert (2007), who detect instability

of prediction models using the dividend yield.

To conclude, this small case study shows that our framework with time-varying co-

efficients can quickly learn — in real-time — changes in economic relationships, even

if these changes are discrete jumps such as the release of Rule 10b-18. In contrast,

regime-switching models that focus exclusively on the dividend yield as a predictor seem

to perform much worse out-of-sample (see, for example, Lettau and Van Nieuwerburgh

(2008)). We interpret this case-study evidence as supportive of our choice of econometric

technique, especially considering that the goal of our study is to evaluate out-of-sample

predictability of a comprehensive set of 13 predictive variables rather than only the divi-

45



Figure 6: The Dividend Yield as a Predictive Variable: This figure reports the sum of
posterior probabilities of all models including the dividend yield as a predictive variable
for two groups of models: (1) the BMA-Model incl. TVar-Coefficients and (2) the BMA-
Model excl. TVar-Coefficients.

dend yield.

5 Conclusion

Although the literature on equity return prediction is growing quickly, it is still quite

inconclusive about two fundamental questions: Does out-of-sample predictability exist,

and what are the important predictive variables? The literature agrees, however, that

parameter instability represents a major challenge in this area. Most papers address it by

using rolling window regressions and/or by performing sub-period investigations. Both
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approaches are ad-hoc, non systematic and unhelpful in understanding the true degree of

parameter instability. In contrast, we propose a systematic way to take time-variation of

coefficients into account.

Coming back to the fundamental questions in return prediction, we find large, signifi-

cant and consistent improvements in the accuracy of out-of-sample predictions if models

with time-varying coefficients are considered. These gains in prediction accuracy also

result in considerable economic profits for an investor who uses the predictions of our

framework with time-varying coefficients. Such an investor outperforms both an investor

who uses constant coefficient models and an investor who uses the unconditional mean

and variance.

Furthermore, we find that predictability is closely related to the business cycle. Our

empirical methodology predicts on average a decreasing (increasing) equity risk premium

during expansions (recessions) — exactly as implied by asset pricing theory (e.g., Camp-

bell and Cochrane (1999)). In this theory, the driving force behind this pattern is time-

varying risk aversion. Thus, we view our study’s results as consistent with a story in which

time-varying risk aversion is responsible (at least partly) for out-of-sample predictability

of equity returns.

In contrast to the existing literature, we do not find that predictability exists exclu-

sively during recessions. We also document evidence for out-of-sample predictability

during expansions — on a smaller scale and only if time-varying coefficients are taken

into consideration. We also analyze the potential sources of this outperformance and find

that it is directly related to the inclusion of time-varying coefficients: models with con-
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stant coefficients receive basically no support from the data. Further, even if we abstract

from the issue of variable selection, we find significant gains in prediction performance

for individual models (e.g., univariate models) including time-varying coefficients. Fi-

nally, we show that our simple way of modeling time-variation can quickly learn changes

in the underlying relationships, such as changes in the regulatory environment in the case

of the dividend yield.

While we are confident that our paper provides several contributions to the literature

on equity return prediction, it also raises new questions. Most importantly, it raises a ques-

tion about the economic forces that cause time-varying predictive relationships. In this

respect, we would need both more theoretical and more empirical research. In a broader

context, our results have important implications for the portfolio optimization and asset

allocation literature. Our findings imply that predictive relationships vary considerably

over time. Thus, predictions of the equity premium beyond a monthly horizon become

more uncertain relative to monthly predictions (see Pastor and Stambaugh (2009a)). How

investors should optimally account for this information in their long-term asset allocation

decisions is an interesting question for future research.

A Appendix

A.1 The Mathematics of Dynamic Linear Models

From the specification of the dynamic linear model in Equations (1) and (2) in Section

2.1, we develop the recurrence for updating the belief about the system coefficients and
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the observational variance in response to observing a new return realization (see West and

Harrison (1997)). Given a normally distributed prior for the system coefficients θ0 and

an inverse-gamma distributed prior for the observational variance V , this can be done in

a fully conjugate Bayesian analysis ensuring that prior and posterior distributions come

from the same family of distributions. As a time t = 0-prior we use the natural conjugate

g-prior specification stated in Equations (3) to (5).

Suppose at some arbitrary time t we have already observed the current return rt .

Hence, we are able to form a posterior belief about the values of the unobservable coeffi-

cients θt−1|Dt and of the observational variance V |Dt . These posteriors are again jointly

normally/inverse-gamma distributed of the form

V |Dt ∼ IG
[

nt

2
,
ntSt

2

]
, (7)

θt−1|Dt ,V ∼ N [mt ,VC∗t ] , (8)

where St is the mean of the time t estimate of the observational variance V , and nt is the

associated number of degrees-of-freedom. The vector mt denotes the point estimate of

the vector of coefficients θt−1 conditional on Dt and V . C∗t is the estimated, conditional

covariance matrix of θt−1 normalized by the observational variance. This assumption

implies that unconditionally on V the posteriors of the coefficients are multivariate t-

distributed given by

θt−1|Dt ∼ Tnt [mt ,StC∗t ] . (9)
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When iteratively updating the estimates, we must remember that due to varying re-

gression coefficients the posterior distribution of θt−1|Dt does not automatically become

the prior distribution of θt |Dt . According to Equation (2), the underlying regression co-

efficients are exposed to Gaussian shocks, which increase the variance but preserve the

mean of the estimate,

θt |Dt ∼ Tnt [mt ,StC∗t +Wt ] . (10)

As mentioned in Section 2.1, we can find the predictive density of the time t + 1

return rt+1 by integrating the conditional density of rt+1 over the range of θ and V . Let

ϕ(x;µ,σ2) denote the density of a (possibly multivariate) normal distribution evaluated at

x and ig(V ;a,b) the density of a IG[a,b] distributed variable evaluated at V . The predictive

density is then

f (rt+1|Dt) =
∫

∞

0

[∫
θ

ϕ
(
rt ;X ′t θ,V

)
ϕ(θ;mt ,VC∗t +Wt)dθ

]
×ig

(
nt

2
,
ntSt

2

)
dV

=
∫

∞

0
ϕ
(
rt ;X ′t mt ,X ′t (VC∗t +Wt)Xt +V

)
(11)

×ig
(

nt

2
,
ntSt

2

)
dV

= tnt (rt+1; r̂t+1,Qt+1),

where t(rt+1; r̂t+1,Qt+1) is the density of a Student-t-distribution with nt degrees of free-

dom, mean r̂t+1, variance Qt+1, evaluated at rt+1. The mean of the predictive distribution
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of rt+1 is given by

r̂t+1 = X ′t mt (12)

since the prior of the regression coefficients is centered at mt . The total unconditional

variance of the predictive distribution is given by

Qt+1 = X ′t RtXt +St , (13)

Rt = StC∗t +Wt , (14)

where Rt denotes the unconditional variance of the time t-prior of the coefficient vector θt .

The first term in (13) characterizes the variance coming from uncertainty in the estimation

of θt ; the second term St is the estimate of the variance of the error term in the observation

equation.

After the time t +1 return rt+1 is observed, the priors about θt and V are updated using

equations (15) to (20).

et+1 = rt+1− r̂t+1 (error in prediction). (15)

The prediction error is the essential signal conditioning learning. Whenever et+1 equals

zero, the observed return equals the forecast, and thus there is no updating in the coeffi-
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cients.

nt+1 = nt +1 (degrees of freedom). (16)

St+1 = St +
St

nt

(
e2

t+1

Qt+1
−1

)
(estimator of observational variance). (17)

Since the total variance of the forecast is given by Qt+1, we have E(e2
t+1) = Qt+1. If

the error in prediction coincides with its expectation (i.e., e2
t+1 = Qt+1), the estimate of

the observational variance is unchanged (i.e., St+1 = St). A prediction error below the

expected error leads to a reduction in the estimated observational variance, and vice versa.

The adaptive vector

At+1 =
RtXt

Qt+1
(adaptive vector) (18)

measures the information content of the current observation in relation to the precision

of the estimated regression coefficient and therefore characterizes the extent to which the

posterior of θt reacts to the new observation. The point estimate m and the covariance

matrix C∗ are updated as follows:

mt+1 = mt +At+1et+1 (estimator for expected coefficient vector), (19)

C∗t+1 =
1
St

(Rt−At+1A′t+1Qt+1) (estimator for variance of coeff. vector). (20)

The discount factor approach that we use to give structure to Wt assumes that the

variance matrix Wt of the error term ωt is proportional to the estimation variance StC∗t of
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the coefficient vector θt |Dt . More precisely, it is assumed that

Wt =
1−δ

δ
StC∗t , δ ∈ {δ1,δ2, . . . ,δd}, 0 < δi ≤ 1, (21)

and thus the expression for the variance of the forecasted coefficient vector simplifies to

Rt = StC∗t +
1−δ

δ
StC∗t =

1
δ

StC∗t , (22)

which ensures analytical tractability of the model. This assumption implies that periods

of high estimation error in the coefficients coincide with periods of high variability in co-

efficients. The nested family of models with constant regression coefficients corresponds

to a specification of δ = 1. Reducing δ below the value of 1 introduces time variation to

the set of regression coefficients. The choice of δ is, in addition to the selection of the

set of predictive variables, a further dimension of model uncertainty that is treated in the

Bayesian model averaging framework presented in Section 2.2.

A.2 Bayesian Model Selection

Let Mi denote a certain choice of predictive variables from the k candidates, and δ j a

certain selection from the set {δ1,δ2, . . . ,δd}. Certainly, these choices crucially influence

the predictive density of the forecasts of the individual models; thus we rewrite the point
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estimate of rt+1 as

r̂ j
t+1,i = E(rt+1|Mi,δ j,Dt) = X ′t mt |Mi,δ j,Dt . (23)

When giving prior weights to the individual models, we start out with the diffuse

conditional prior P(Mi|δ j,D0) = 1/(2k−1) ∀i. We use Bayes’ rule to obtain the posterior

probabilities

P(Mi|δ j,Dt) =
f (rt |Mi,δ j,Dt−1)P(Mi|δ j,Dt−1)

f (rt |δ j,Dt−1)
, (24)

where

f (rt |δ j,Dt−1) = ∑
M

f (rt |Mi,δ j,Dt−1)P(Mi,δ j,Dt−1). (25)

The crucial part is the conditional density

f (rt |Mi,δ j,Dt−1)∼
1√
Q j

t,i

tnt−1

rt− r̂ j
t,i√

Q j
t,i

 , (26)

where tnt−1 is the density of a Student-t-distribution and r̂ j
t,i and Q j

t,i are the respective

point estimates and variance of the predictive distribution of model Mi and given δ = δ j;

see Equation (11). The time t +1 return prediction of the average model for a given δ = δ j
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then equals

r̂ j
t+1 =

2k−1

∑
i=1

P(Mi|δ j,Dt)r̂
j
t+1,i. (27)

Since a particular choice of δ cannot be done on an ad-hoc basis, we also perform

Bayesian model averaging over different values of δ. If we consider d candidates for δ,

we assign a prior probability of 1/d to each δ value. The time t posterior probability of a

certain δ is then

P(δ j|Dt ,) =
f (rt |δ j,Dt−1)P(δ j|Dt−1)

∑δ f (rt |δ,Dt−1)P(δ|Dt−1)
. (28)

Note that this posterior probability is going to be of key importance in our empirical

analysis, as it indicates which assumptions on time-variation are supported by the data.

The total posterior of a certain model configuration (i.e., variable choice and choice

of δ) is then given by

P(Mi,δ j|Dt) = P(Mi|δ j,Dt)P(δ j|Dt) (29)

and the unconditional average prediction of the average model is

r̂t+1 =
d

∑
j=1

P(δ j|Dt)r̂
j
t+1. (30)
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