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1 Introduction

A corporation’s opportunities to expand, contract, or otherwise alter pro-
duction can impact its risk and return dynamics, as observed by Berk, Green,
and Naik (1999) and subsequent authors.1 In an industry setting, a firm’s
decisions may additionally affect the required returns of product market
rivals, and vice versa. Identifying the distinct impacts of own and rival
real options on firm risk can be useful to both finance research and prac-
titice. For example, financial analysts often estimate the required return of
a project or corporation using not only the historical risk of the firm, but
also its industry rivals.2 To evaluate the validity of such practices requires
sound theoretical understanding of the drivers of systematic risk, yet exist-
ing literature is silent as to the differential effects of own-firm and rival real
options on own-firm and rival required returns.

In this paper, we study own and rival risk in a dynamic duopoly with a
homogeneous output good, real options to expand or contract capacity as
industry demand changes, and potentially different adjustment costs across
firms. For some parameter values the unique equilibrium requires firms to
exercise their options simultaneously, implying that the expected returns of
the two firms move together as in the symmetric oligopoly studied by Aguer-
revere (2009). By contrast, even arbitrarily small differences in adjustment
costs can imply non-simultaneous exercise in which one firm acts as a leader
and the second as a follower.3 In such cases, we show that the systematic
risk of a firm and its rival may alternately move together or apart over time,
depending on industry conditions and the corresponding changing impor-
tance of own and rival growth and contraction options. Because of these
dynamics, in a leader-follower equilibrium the joint evolution of required

1See, for example, Aguerrevere (2009), Carlson, Fisher, and Giammarino (2004, 2006),
Cooper (2006), Gomes, Kogan, and Zhang (2003), Hackbarth and Morellec (2008), John-
son (2002), Kogan (2004), Sagi and Seasholes (2007), and Zhang (2005). In the real
options area, this literature builds on Brennan and Schwartz (1985) and McDonald and
Siegel (1985, 1986).

2The widely used Ibbotson Beta Book provides estimates of beta based on a peer group
that depends on industry classification, and the use of industry competitors to proxy for
own-firm risk is discussed in finance textbooks such as Brealey and Myers (2001), and
Ross, Westerfield, and Jaffe (1996).

3 In prior literature, leader-follower equilibria are studied for example in Smets (1991),
Dixit and Pindyck (1994), and Grenadier (1996).
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returns departs substantially from simultaneous move outcomes.
For both expansions and contractions, our analysis reveals that rival real

options reduce own-firm risk through a simple hedging channel. For exam-
ple, when a competitor possesses a growth option any good news about the
product market is partially offset by the closer proximity of rival expan-
sion. Conversely, bad news about industry demand is counterbalanced by
a decline in the threat of competitor capacity additions. Hence, all else
equal rival growth options reduce own firm risk. Similarly, when the rival
possesses a contraction option, industry demand shocks are partially offset
by opposite movements in the likelihood of near-term rival asset sales, again
reducing own firm risk. The magnitudes of the hedging effects created by
rival real options change over time with industry conditions and the distance
to the competitor’s option exercise boundaries.

To develop intuition in the simplest case possible, we first consider an
industry where one firm is a “strategic dummy” with permanently fixed
output, while the second firm has a single option to irreversibly expand or
contract its quantity supplied. At each instant, prices are determined by
aggregate industry output and both firms receive a flow of profits. The
firm possessing an option to adjust capacity has upper and lower bounds for
expansion and contraction, and risk dynamics similar to those shown in prior
literature focusing on monopolist exercise. Although the strategic dummy
has no real options of its own, we show that its valuation equations and risk
nonetheless reflect the dynamic output policies of its rival. In particular,
the risk of the strategic dummy decreases as its rival moves towards either its
expansion or contraction boundary, and immediately jumps up to a constant
when the rival exercises its option.4

In the more general case where both firms may expand or contract, the
own-firm and rival valuation equations and betas can possess up to four
real options components. Whether on an expansion or a contraction path,
the leader’s real option tends to be more important for both own and rival
valuation equations and risk, because the follower option is further out-of-
the money. On an expansion path, the dynamics of leader and follower
risk follow a distinctive pattern. As the leader moves closer to exercise, her

4The discontinuity in risk at the instant of competitor option exercise reflects the
generic lack of smooth pasting when other players take discrete actions in a continuous-
time game.
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own risk increases due to growth option leverage, while the follower risk de-
creases due to the rival hedging effect. Immediately at the instant the leader
exercises her growth option, the risks of the two firms jump oppositely by
sufficient magnitudes such that the follower risk exceeds leader risk. Thus,
on a path of increasing industry demand own- and rival-firm risk tend to
move in opposite directions. By contrast, the own-firm and rival-firm effects
of contraction options have the same sign, and in an environment of decreas-
ing industry demand the leader and follower risks tend to move together.
These theoretical results suggest that the commonly recommended prac-
tice of using competitor or industry betas to proxy for own-firm risk should
work well in certain environments, but not in others, providing testable new
empirical predictions.

Our paper builds on several areas of the literature. Berk, Green, and
Naik (1999) and Gomes, Kogan, and Zhang (2003) pioneered investigation
of the risk and return implications of real options, using models of cash
flows and discount rates that abstract from explicit consideration of prod-
uct market competition. Subsequent literature considers risk dynamics due
to real options in a variety of homogeneous goods market structures. Carl-
son, Fisher, and Giammarino (2004, 2006) and Cooper (2006) study cross-
sections of monopolists with varying options to expand, contract, enter, or
exit. Kogan (2004) analyzes risk and return in a perfectly competitive indus-
try with symmetric firms and investment irreversibility, while Zhang (2005)
allows cross-sectional firm differences within a perfectly competitive indus-
try. Aguerrevere (2009) builds on Aguerrevere (2003) and Grenadier (2002)
to analyze risk and return in a symmetric simultaneous-move oligopoly.5

Importantly, the framework we adopt overcomes the difficulties with
subgame perfection noted by Back and Paulson (2009) in the model of
Grenadier (2002) and in other recent papers analyzing equilibrium stopping-
time games. Back and Paulson show that while the equilibrium discussed
by Grenadier is an “open-loop” Nash equilibrium, it does not satisfy the
standard subgame perfection requirement of a Markov perfect “closed-loop”

5Other related work includes Novy-Marx (2008), who considers simultaneous-move
strategies in an oligopoly related to the Grenadier (2002) setting but where firms have
cost differences; Hackbarth and Morellec (2008) who study risk dynamics in a merger
setting; Carlson, Fisher, and Giammarino (2008) and Kuehn (2008), who discuss the
impact of investment commitment on risk; and Pastor and Veronesi (2008) who discuss
the impact of technological innovation on asset price dynamics.
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equilibrium. Subgame perfection importantly rules out strategies involv-
ing precommitments that are not credible. In the strategies described by
Grenadier, firms have an incentive to preempt investment by their rivals
but do not do so. Hence while these precommitment strategies form a Nash
equilibrium, they do not satisfy subgame perfection. Similar features are
present in recent studies building on the Grenadier model, such as Agurre-
vere (2003, 2009) and Novy-Marx (2008). Back and Paulson show that in
a closed-loop equilibrium of the Grenadier model, all real option values are
competed away due to the inherent incentive to preempt accompanied by
the unlimited ability to expand. By contrast, all of the equilibria we con-
sider satisfy subgame perfection and hence form closed-loop equilibria, but
option values remain positive because expansion opportunities are finite.

Other research in the real options literature analyzes equilibrium exercise
of expansion or contraction opportunities in a duopoly setting, but does not
investigate risk dynamics. Examples that relate most closely to the frame-
work we consider include Smets (1991), Dixit and Pindyck (1994), Grenadier
(1996), Huisman and Kort (1999), Boyer, Lasserre, Marriotti, and Moreaux
(2001), and Murto (2004). In general, simultaneous exercise of growth op-
tions may occur even when firms have asymmetric adjustment costs, pro-
vided assets in place exist (e.g., Pawlina and Kort, 2006). Our framework
emphasizes the importance of the product market demand elasticity in deter-
mining the boundary between simultaneous-exercise equilibrium and leader-
follower equilibria, and hence provides an explicit, empirically measurable
link between product market characteristics and risk dynamics. For high de-
mand elasticities, simultaneous exercise can be supported for a large range
of asymmetries in adjustment costs. By contrast, when demand elastici-
ties are low, even arbitrarily small adjustment cost asymmetries can lead to
leader-follower exercise as the unique equilibrium outcome.6 For contraction
options, no simultaneous-move equilibria exist.

6For many combinations of low demand elasticities and large growth options, even
perfectly symmetric firms cannot optimally exercise growth options simultaneously, and a
randomly chosen leader arising from mixed strategies is the only possibility. Huisman and
Kort (1999) and Boyer, Lassere, Mariotti, and Moreaux (2001) discuss mixed strategies in
expansion games, which requires an extension of the strategy space beyond simple state-
dependent triggers following Fudenberg and Tirole (1985). See also Smets (1991), Dixit
and Pindyck (1994), and Grenadier (1996).
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In all leader-follower equilibria7 for both expansions and contractions,
the distance between leader and follower triggers remains bounded below
even for arbitrarily small adjustment cost asymmetries, or in the case of
identical firms when the leader is randomly chosen. Intuitively, the leader’s
action, whether expansion or contraction, strategically impacts the incen-
tives of the follower to create a finite separation in their actions. Hence,
non-simultaneous exercise can be an important feature of both expansions
and contractions, even when firms are ex ante very similar or identical. The
risk dynamics that we demonstrate for leader-follower equilibria therefore
fill an important gap in the finance literature.

Section 2 describes the general model. In Section 3, we analyze the sim-
plest case where one firm is a strategic dummy, and show the risk-reducing
effects of rival growth options. Section 4 presents the leader-follower equi-
librium where firms with asymmetric costs may expand or contract. Section
5 concludes.

2 The Asymmetric Duopoly Model

We present a model in which two strategically interacting firms compete in
output levels in a homogeneous goods market, and have options to invest or
disinvest in capacity.

2.1 Industry Demand, Production Technologies, and Capital
Accumulation

Let Q1t and Q
2
t denote the output rates of firm one and firm two at instant t,

and define the industry output rate Qt = Q1t +Q
2
t . The homogeneous good

price is determined by the iso-elastic inverse demand curve

Pt = XtQ
γ−1
t , (1)

7Our notion of a “leader-follower” equilibrium is synonymous with “non-simultaneous.”
Several types of leader-follower equilibria are distinguished below and have been discussed
in prior literature. In a “non-preemptive” equilibrium, the leader and follower use the
trigger strategies that would arise if the follower were prohibited from acting first and the
role of “leader” determined prior to the start of the game. In a “pre-emptive” equilibrium,
the threat of action by the follower causes the leader to act earlier than she would if the
rules of the game prohibited the follower from acting first. In a mixed strategy equilibrium,
which may occur if firms are symmetric, the leader is determined randomly.
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where 0 < γ < 1, and Xt is an exogenous state variable that represents the
level of industry-wide demand. The dynamics of Xt are specified by

dXt = gXtdt+ σXtdWt, (2)

where dWt is the increment of a Wiener process, g is the constant drift, and
σ2 the constant variance.

Firm i produces output at time t using installed capital Ki
t where i ∈

{1, 2}. Any capital level Ki
t is associated with a maximum output level

Q
¡
Ki
t

¢
≥ Qit. For simplicity, capital levels take one of three discrete values:

Ki
t ∈ {κ0,κ1,κ2}, where κ0 < κ1 < κ2, and for convenience we denote qj ≡

Q (κj) with q0 < q1 < q2.8 Costs of production for firm i at date t are given
by the increasing function F it = f

¡
Ki
t

¢
. This cost structure emphasizes

operating leverage, since total expenditures depend only on the installed
capital levelKi, as with maintenance costs or other overhead related to plant
size. Given the three possible capital levels, there are also three possible
levels of fixed operating costs: F it ∈ {f0, f1, f2}, where f0 < f1 < f2.

To move from one capital state to another, the firm may incur costs or
generate cash flows from buying or selling the productive asset, inclusive of
any associated adjustment costs. To capture this idea in a general way, we
specify for each firm a matrix of discrete transition costs:

Λi ≡

⎡⎢⎣ 0 λi01 λi02
λi10 0 λi12
λi20 λi21 0

⎤⎥⎦ .
The instantaneously incurred lump-sum cost for firm i to move from capital
level κm to κn is given by λimn. The only source of heterogeneity between
firms in our model is that Λ1 and Λ2 need not be identical. We assume as
an initial condition that at date zero, each firm is endowed with Ki

0 = κ1
units of capital.

We finally define indicator variables Dimnt that take the value one at the
instant when firm i switches from capital level κm to κn, and zero elsewhere.
We denote by Dit the matrix of investment decisions D

imn
t .

8The assumption that the potential output levels qj are the same for firms 1 and 2 is not
essential, and is made here for notational convenience. The arguments in the Appendix
are valid when the output levels qj differ across firms i, hence permitting asymmetric
revenue functions.
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2.2 Output, Investment Strategies, and Equilibrium

The economy described above is a dynamic game between firms 1 and 2.
At each instant, the managers of the two firms choose output rates Qit and
make investment decisions Dit knowing the complete history of the game

denoted by Φt =
³£
Q1s, Q

2
s,K

1
s ,K

2
s

¤
s<t
, [Xs]s≤t

´
, which is common to both

managers.
We define the payoff to firm i as the present value of the expected dis-

counted future cash flows. The cash flows at time t derive from revenues
in excess of fixed costs πit ≡ PtQit − F it and from lumpy investment costs
related to the decision Dit. We assume the absence of agency conflicts, so
that manager i maximizes the value function

V it ≡ Et
Z ∞

t
e−r(s−t)

Mt+s

Mt

£
πit+sds+ 1

0 ¡Dit+s ∗ Λi¢1¤ , (3)

where 10 = [1, 1, 1], ∗ represents element-by-element multiplication, and the
pricing kernel Mt satisfies M0 = 1 and dMt =

μ−r
σ MtdWt.

Given the Markov structure of this environment, it is natural to restrict
attention to Markov strategies. Manager i can then take actions Qit and
Dit that depend only on the most recently observed values of the payoff
relevant state variables Xt and Kt− ≡

¡
K1
t−,K

2
t−
¢
, where Ki

t− ≡ lims↑tKi
s.

A pure strategy Markov-perfect equilibrium (MPE) of the game is a pair of
strategies

¡
Qi,Di

¢
, i = 1, 2, such that the value functions (3) are maximized

in every state (Kt−,Xt) given the equilibrium strategy of the rival.
It is straightforward to show that any MPE must have quantity choices

equal to static Cournot equilibrium output levels. Given our assumption
that demand is sufficiently elastic (implied by γ > 0) and the absence of
marginal costs, all firms produce at full capacity. Hence, any MPE strategy
requires Qit = Q

i
¡
Ki
t

¢
.9 The instantaneous profit functions

πit = Xt
£
Q1
¡
K1
t

¢
+Q2

¡
K2
t

¢¤γ−1
Qi
¡
Ki
t

¢
− F it

are thus fully determined by the current capital levels K1
t and K

2
t and the

value of the state variable Xt.
9 Instantaneous suboptimal actions are ruled out by Markov perfect equilibrium, which

requires that all players’ strategies must depend only on payoff relevant state variables.

7



To aid future exposition, it is convenient to define the capital dependent
revenue factors

R1mn ≡
£
Q1 (κm) +Q

2 (κn)
¤γ−1

Q1 (κm) ,

R2mn ≡
£
Q1 (κm) +Q

2 (κn)
¤γ−1

Q2 (κn) ,

where m,n ∈ {0, 1, 2} index the capital levels of firms 1 and 2, respectively.
We can then conveniently write the profit function of each individual firm i

as πi
¡
K1
t = κm,K

2
t = κn,Xt

¢
= XtR

i
mn − F it .

Given the simplification of the instantaneous output choices Qit, we can
henceforth focus attention on the dynamic game of option exercise involving
the capital levels Ki

t and the investment decisions D
i
t. Any Markov strategy

can be summarized by a set of exercise boundaries that for each player i
and each capital state Kt− specify regions of the state variable Xt at which
player i will change his capital level to a new state. We can use standard
techniques of backward induction to derive MPE of the dynamic game.

3 Rival Growth Options and Risk

This section considers the simplest case of the general model developed in
Section 2. Specifically, we assume that one rival is flexible, and begins with
one option to either expand or contract, while the other rival is inflexible and
has no ability to change its capital level. This scenario helps us to isolate
the two sources of real option risk, own and rival, that can occur in a real
options duopoly.

The flexible firm has risk that changes over time only because of its own
real option and operating leverage. As in the monopoly case explored in
previous literature, the flexible firm has an own-option risk component but
no independent source of dynamic industry risk. By contrast, the inflexible
firm has no own-option component in its risk loadings, but nonetheless, it
is exposed to dynamic risk due to the investment decisions of its rival.

To achieve a specification where one firm is flexible and the other inflex-
ible, we set the capital adjustment costs to

Λ1 ≡

⎡⎢⎣ 0 −∞ −∞
S 0 −I
−∞ −∞ 0

⎤⎥⎦ Λ2 ≡

⎡⎢⎣ 0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⎤⎥⎦ ,
8



where S, I > 0. Firm 1, the flexible firm, thus begins at capital level κ1
and has a single option to change capacity, either by expanding to κ2 or
contracting to κ0. If it expands, it pays the investment cost I and if it
contracts it receives the salvage value S. Once firm 1 either expands or
contracts, it has no further options to change capacity. Firm 2 begins at
capital level κ1 and has no real options.

We now examine the exercise decision and valuation of the flexible firm.

Proposition 1: The optimal policy of the flexible firm is to expand at
XE > 0 and contract at XC < XE, where XC and XE solve the pair of
nonlinear equations given in the Appendix. The value of the flexible firm
prior to option exercise is:

V 1(Kt,Xt) = V
1
A(Kt,Xt) + V

1
F (Kt) + V

1
O(Kt,Xt),

where V 1A(Kt,Xt) = R111Xt/δ is the growing perpetuity value of assets in
place assuming no future capacity adjustments by either firm, V 1F (Kt) =
−f

¡
K1
t

¢
/r is the perpetuity value of fixed operating costs, V 1O(Kt,Xt) =

B11X
ν1
t + B12X

ν2
t is the value of growth options, B11 and B

1
2 are positive

constants determined by the boundary conditions, and ν1 > 1 and ν2 < 0

are constants given in the Appendix.

As in standard real option models, (e.g., McDonald and Siegel, 1985, 1986),
the flexible firm value consists of assets in place and its own option value.
The real option has two components related to the growth opportunity and
contraction option respectively, but their values are not independent since
the constants B11 and B

1
2 can only be determined by jointly solving the value

matching equations at the exercise boundaries. The positivity of the con-
stants B11 and B

1
2 reflects that ownership of these options is value-enhancing,

and the positive and negative signs of the roots ν1 and ν2 reflect that growth
options increase with movements in the underlying asset while the opposite
holds for contraction options.

The inflexible firm value consists only of its assets in place, but an ex-
ternality is imposed by the rival real options.

Proposition 2. The value of the inflexible firm is entirely determined by
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the value of the assets in place net of the present value of fixed costs:

V 2(Kt,Xt) = V
2
A(Kt,Xt) + V

2
F (Kt) + V

2
C(Kt,Xt),

where V 2A(Kt,Xt) = R211Xt/δ is the growing perpetuity value of assets in
place assuming no future adjustment to capacity by either firm, V 2F

¡
K2
t

¢
=

−f
¡
K2
t

¢
/r, is the perpetuity value of fixed operating costs, V 2C(Kt,Xt) =

B21X
ν1
t + B22X

ν2
t is the value externality imposed by competitor growth op-

tions, and the constants B21 ≤ 0, B22 ≥ 0 are determined by the value match-
ing conditions at the rival exercise boundaries, as described in the Appendix.

The valuation externality imposed by competitor real options has two com-
ponents related to the rival growth option and contraction option respec-
tively. The negative sign of B21 reflects that rival expansion options reduce
value, while B22 ≥ 0 follows from the value enhancing effect of competitor
contractions. We note from Propositions 1 and 2 that contraction options
impact own and rival-firm values with the same sign, whereas expansion
options have opposite valuation impacts on a firm and its rivals. These
valuation effects have implications for risk.

To determine dynamic loadings on the stochastic discount factor, we
calculate the elasticity of firm value with respect to Xt as described in the
Appendix.

Proposition 3. The dynamic betas for the flexible and inflexible firm are:

βi(Kt,Xt) = 1+
f1/r

V i(Kt,Xt)
+

½
(ν1 − 1)

Bi1X
ν1
t

V i(Kt,Xt)
+ (ν2 − 1)

Bi2X
ν2
t

V i(Kt,Xt)

¾
prior to option exercise and βi(Kt,Xt) = 1+(f1/r) /V

i(Kt,Xt) afterwards.

Consistent with the valuation equations, the betas for the flexible and inflex-
ible firms consist of three parts. By assumption the revenue beta is equal to
1. The second component is operating leverage, which always increases risk,
and the final term for both firms arises from the flexible firm’s real options.
We note that although the structure of beta for both firms is similar, the
economic interpretation is very different. The flexible firm’s risk depends
only on its own firm-specific decisions, whereas the inflexible firm has no
decisions to make and its risk is determined entirely by industry effects.
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Examining the flexible firm first, we note that since ν1 > 1 and B11 ≥ 0,
its own risk rises due to its own option to expand. On the other hand, since
ν2 < 0 and and B12 ≥ 0, the option to contract reduces risk. The inflexi-
ble firm dynamic loadings on the stochastic discount factor are determined
by B21 ≤ 0 and B22 ≥ 0, implying that its risk decreases due to both the
competitor growth option and the competitor expansion option. This sim-
ple example illustrates two important points, which we now discuss in more
detail.

First, rival real options reduce risk. Intuitively, a competitor’s invest-
ment decisions act as a natural hedge against variations in the exogenous
state variable. Good news about demand going up will be partially offset
by the bad news that the competitor is closer to expanding. Figure 1 gives
a graphical presentation of this hedging argument. Before the flexible firm
exercises her option, industry demand is indicated by the downward slop-
ing curve D and the industry supplies output at the full-capacity level Q1.
Consider now an increase in demand to the level D0 that induces the flexible
firm to exercise her growth option. The corresponding increase in industry
supply causes prices to increase less than to the level P ∗ corresponding to
the old supply curve. Prices rise more moderately to P2 instead of P ∗, and
the dampening in profits caused by the increase in industry supply after a
positive demand shock corresponds to the natural hedging effect caused by
rival real options.

The second important implication of the simple example developed in
this section is that expansion options have an oppositely signed impact on
own-firm and rival risk, while contraction options affect both firms’ risk in
the same direction. These risk implications follow from the valuation im-
pacts of own and rival real options discussed previously. Contraction options
of both one’s own firm and rivals create a hedge against adverse moves in
underlying fundamentals. By contrast, own-firm expansion opportunities
amplify risk, whereas rival expansion opportunities mitigate the potential
for upside gain.

Figure 2 shows the own and rival risk effects discussed above. For sim-
plicity, we assume the inflexible firm has no operating leverage. In the figure,
XC is the critical level of demand at which the flexible firm shrinks and XE
is critical level at which the flexible firm expands. The diagram illustrates
that rival real options reduce risk, and that real options can cause own and
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competitor risks to move together or in opposite directions. As demand
increases and the growth option becomes more important, the flexible firm’s
risk increases while the inflexible firm’s risk decreases. By contrast, when
demand decreases and the contraction option is more valuable, own and rival
firm risk tend to move together. The next section investigates the robust-
ness of these results when both firms possess growth options and exercise is
strategic.

4 Dynamic Risk in Asymmetric Industry Equilib-
rium

We now permit both firms to have real options to expand or contract capac-
ity, and consider the corresponding equilibrium play. We obtain analytical
solutions for firm risk and required return in two cases: 1) when both firms
have expansion options, and 2) when both firms have contraction options.

4.1 Equilibrium Exercise of Expansion Options

To analyze equilibrium in the case where both firms have only a single growth
option, we set the capital adjustment costs to

Λ1 ≡

⎡⎢⎣ 0 −∞ −∞
−∞ 0 −I
−∞ −∞ 0

⎤⎥⎦ Λ2 ≡

⎡⎢⎣ 0 −∞ −∞
−∞ 0 −ρI
−∞ −∞ 0

⎤⎥⎦ ,
where ρ ≥ 1 so that the expansion costs of firm 1 are lower than those of
firm 2.

We show below that in all Markov-perfect equilibria the low-cost firm
invests at least as soon as the high-cost firm. Given this simplification,
industry structure can be one of three potential phases: a juvenile industry
where neither firm has exercised its growth option, an adolescent industry
where the “leader” has exercised and the “follower” has not, and a mature
industry where both firms have expanded. Figure 3 depicts the different
industry stages.

We divide all possible equilibria into two primary classifications, “simul-
taneous” and “leader-follower.” By this categorization, a leader-follower
equilibrium is defined simply by the absence of simultaneous exercise. All
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three industry stages occur for a finite period of time with probability one
in a leader-follower equilibrium, whereas in a simultaneous equilibrium the
industry structure jumps immediately from juvenile to mature.

Following Pawlina and Kort (2006),10 determining payoffs under different
strategies proceeds by backward induction, and allows determination of the
type of equilibrium. For example, assuming firm 1 as the leader and firm 2
as the follower, we first calculate the optimal exercise of firm 2 and then the
optimal exercise of firm 1. We similarly calculate value functions and triggers
with firm 2 as the leader and firm 1 as the follower. Finally, we calculate
value functions and triggers where both firms exercise simultaneously.

To simplify discussion, in the remainder of this section we assume that
the initial demand stateX0 is strictly less than the leader trigger level of firm
1, which ensures that the juvenile industry state occurs for a finite period
of time in equilibrium.11 We then summarize the types of equilibrium that
may occur.

Proposition 4. The MPE of the expansion game are characterized by:

1. Simultaneous Equilibrium: There exists a value ρ∗∗ (γ, q1, q2, f1, f2, v1) >
0 such that for all 1 ≤ ρ < ρ∗∗ the unique MPE involves simultaneous
exercise with a trigger that maximizes the low-cost firm’s value. There
exist no other simultaneous investment MPE. Hence if ρ∗∗ < 1, no
simultaneous exercise equilibria exist.

2. Non-Preemptive Leader-Follower Equilibrium: There exists a value
ρ∗ (γ, q1, q2, f1, f2, v1) > 1 such that for all ρ > max [ρ∗, ρ∗∗], the
unique MPE results in the high-cost firm acting as the follower with
trigger X2

F and the low-cost firm acting as the leader with trigger
X1
LN < X

2
F , where the triggers given in the Appendix are identical to

those obtained if the roles of leader and follower were predetermined
prior to the beginning of the game, and the follower could not threaten
to preempt the leader’s investment.

10See also Smets (1991), Dixit and Pindyck (1994), and Grenadier (1996), who consider
leader-follower equilibria in the special case of symmetric firms, where a leader must be
chosen by some form of randomization.
11Grenadier (1996) discusses outcomes when the initial state exceeds the leader trigger

in the symmetric case.
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3. Preemptive Leader-Follower Equilibrium: For ρ satisfying ρ∗ ≥ ρ ≥
max [ρ∗∗, 1], the unique MPE results in the high-cost firm acting as
the follower with trigger X2

F and the low-cost firm acting as the leader
with trigger X1

LP < X
2
F , where the trigger of the leader X

1
LP ≤ X1

LN

is determined as the indifference point of the high-cost firm between
acting as a leader or a follower. Hence the threat of the high-cost firm
to preemptively expand causes the low-cost firm to itself preemptively
invest just at the instant when the high-cost firm’s preemption threat
becomes credible. The leader’s expansion deters growth of the follower
in the region between X1

LP and X
2
F .

4. Random Leader-Follower Equilibrium: If ρ = 1 and ρ∗∗ < 1, no pure
strategy MPE is possible. To obtain a mixed strategy MPE requires ex-
panding the strategy space as discussed in Fudenberg and Tirole (1985)
and Huisman and Kort (1999).12 In the mixed strategy equilibrium the
leader is randomly chosen at instant X1

LP = X
2
LP , and the other firm

becomes the follower exercising at X1
F = X

2
F .

Equilibrium play in the expansion game can thus be categorized by the re-
gions of the parameter space in which each equilibrium holds. To illustrate
the proposition, we fix the parameter values σ = 0.2, q1 = 2, q2 = 10, f1 =
f2 = 0, r = 0.05, δ = 0.03 and I = 500, and diagram in Figure 4 the equi-
librium regions in the two-dimensional space of γ, related to the demand
elasticity, and the relative cost difference ρ. For high levels of demand elas-
ticity (low γ), the simultaneous equilibrium can be supported even when
expansion cost asymmetries are large. By contrast when the demand elas-
ticity is low (high γ), arbitrarily small positive cost asymmetries imply that
one of the pure strategy leader-follower equilibria must hold.13

The link between demand elasticity and the existence of the simultane-
ous exercise equilibrium relates to the impact of investment on the profits
generated by assets in place. When demand elasticity is low, expanding
output has a small negative effect on asset-in-place value, and the benefit
12See also Thijssen, Huisman, and Kort (2002) and Boyer, Lasserre, Mariotti, and

Moreaux (2001).
13An interesting comparative static that does not appear in Figure 4 is that as q2

increases (corresponding to an increase in the ratio of growth options to assets-in-place),
the region corresponding to simultaneous investment shrinks.
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of waiting for simultaneous investment relative to acting as a leader is not
as large. By contrast, when the demand elasticity is very high the value of
waiting to invest simultaneously can be everywhere higher than the value of
acting as a leader, and simultaneous investment can be supported.

Valuation in the pure-strategy leader-follower equilibria can be conve-
niently summarized.

Proposition 5. In any pure-strategy leader-follower equilibrium, the leader’s
value function V 1(Kt,Xt) is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R111Xt
δ − f1

r +

∙
(R121−R111)X1

L

δ − (f2−f1+rI)
r

¸³
Xt
X1
L

´ν1
+
X2
F
δ

£
R122 −R121

¤ ³
Xt
X2
F

´ν1
Xt < X

1
L,

R121Xt
δ − f2

r +
X2
F
δ

£
R122 −R121

¤ ³
Xt
X2
F

´ν1
X1
L ≤ Xt ≤ X2

F ,

R122Xt
δ − f2

r Xt > X
2
F ,

and the follower’s value function V 2(Kt,Xt) is equal to⎧⎪⎪⎨⎪⎪⎩
R211Xt

δ − f1
r +

f2−f1+rρI
r(ν1−1)

³
Xt
X2
F

´ν1
+

X1
L
δ

£
R221 −R211

¤ ³
Xt
X1
L

´ν1
Xt ≤ X1

L,

R221Xt
δ − f1

r +
f2−f1+rρI
r(ν1−1)

³
Xt
X2
F

´ν1
X1
L ≤ Xt ≤ X2

F ,

R222Xt
δ − f2

r Xt > X
2
F .

where the optimal leader trigger is X1
L ≡ X1

LN for a non-preemptive equilib-
rium and X1

L ≡ X1
LP in a preemptive equilibrium.

Both firm values are composed of the growing perpetuity value of the assets
in place assuming constant industry structure, the perpetuity value of the
fixed costs, the own-firm option value, and the externality imposed by the
rival option.

Using the leader’s non-preemptive triggerX1
LN = (f2−f1+rI)δν1/[(R121−

R111)r(ν1 − 1)], an alternative decomposition of the leader value function in
a juvenile industry can be derived:

V 1(Kt,Xt) =
R111
δ
Xt −

f1
r| {z }

assets in place

+

∙
X1
L −

µ
1− 1

ν1

¶
X1
LN

¸
[R121 −R111]

δ

µ
Xt
X1
L

¶ν1

| {z }
own growth option

+
X2
F

δ
[R122 −R121]

µ
Xt
X2
F

¶ν1

| {z }
rival value adjustment

, (4)
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where as before X1
L ≡ X1

LN applies for a non-preemptive equilibrium and
X1
L ≡ X1

LP for a preemptive one. The rival value adjustment is always
negative, consistent with the price-reducing effect of competitor expansion
discussed in Section 3. The leader’s own growth option value is proportional
to a weighted sum of the two triggers X1

L and X
1
LN . In a non-preemptive

equilibrium X1
L = X1

LN it is straightforward to observe that the leader’s
own growth option value must be positive since ν1 > 1. In a preemptive
equilibrium, equation (4) interestingly shows that both the preemptive and
non-preemptive triggers enter into the valuation equation, and the relative
sizes of the two triggers as well as v1 determine the sign of the own growth
option value. For most parameters, the own growth option value is positive,
but for example if the risk-free rate and hence v1 are very large then the
leader’s own growth option value can in fact be negative.14

The follower’s value in a juvenile industry similarly can be rewritten:

V 2(Kt,Xt) =
R211
δ
Xt −

f1
r| {z }

assets in place

+
X2
F

δν1
[R222 −R221]

µ
Xt
X2
F

¶ν1

| {z }
own growth option

+
X1
L

δ
[R221 −R211]

µ
Xt
X1
L

¶ν1

| {z }
rival value adjustment

.

The follower’s own-option effect is always positive and the rival value-adjustment
is negative.

The valuation equations in a simultaneous-exercise equilibrium have a
different appearance.

Proposition 6. In case of simultaneous exercise the value function of each
firm V i(Kt,Xt) is given by⎧⎨⎩

Ri11Xt
δ − f1

r +
f2−f1+rIi
r(ν1−1)

³
Xt
Xi
S

´ν1
Xt ≤ Xi

S ,

Ri22Xt
δ − f2

r Xt > X
i
S ,

with the expansion trigger Xi
S = ν1δ(f2−f1+rI i)/

£
(ν1 − 1)r

¡
Ri22 −Ri11

¢¤
.

14One set of parameters for which the leader own growth option value is negative is
γ = 0.5, σ = 0.1, q1 = 2, q2 = 10, f1 = f2 = 0, rf = 1.0, δ = 0.88, I = 100.
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Firm value therefore appears to contain only the assets in place and an
option component:

V i(Kt,Xt) =
Ri11
δ
Xt −

f1
r| {z }

assets in place

+
Xi
S

δν1
[Ri22 −Ri11]

µ
Xt
Xi
S

¶ν1

| {z }
growth option

. (5)

Hence, the distinguishing feature of the simultaneous exercise equilibrium is
that the rival firm value adjustment is not apparent.

Of course, both own-firm and rival effects are implicitly embedded within
the growth option component of (5), but there is not a unique decomposition
of the change in profits Ri22−R11. For example, one possible decomposition
for firm 1 is to designate R122−R112 as the own growth option component and
R112−R111 as the rival effect. On the other hand, it is equally sensible to view
R122 − R121 as the competitor effect and R121 − R111 as the own effect. Thus,
due to simultaneous exercise the own and rival effects are not separately
identified. However, we do note that in both possible decompositions the
own effect is positive and the rival effect is negative.

To derive risk implications for all three different types of equilibria, we
use similar notation as previously and write for i = 1, 2,

V i(Kt,Xt) = V
i
A(Kt,Xt) + V

i
F (Kt) + V

i
O(Kt,Xt) + V

i
C(Kt,Xt),

where V iO(Kt,Xt) is the own-option component of value, and V
i
C(Kt,Xt) is

the rival-option component of value.15 We then show

Proposition 7. In all pure strategy equilibria, systematic firm risks for the
follower and the leader are given by

βi(Kt,Xt) = 1 +
V iO(Kt,Xt) + V

i
C(Kt,Xt)

V i(Kt,Xt)
(ν1 − 1) +

V iF (Kt)

V i(Kt,Xt)
, (6)

for all industry states Kt.

Systematic firm risk in a growing oligopolistic industry is thus driven by
a firm’s operating leverage, its own growth options, and the risk reducing
effects of rival growth options.
15 We acknowledge that the own and rival components can interact, particularly in

the pre-emption equilibrium where the follower real option directly influences the leader
trigger. However, conditional on the leader and follower triggers the decomposition into
own and rival components is natural.
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We emphasize several important points regarding Proposition 7. First,
the own growth option and rival growth option components of value en-
ter additively into the second term in (6). Hence, the risk effects of own
and rival growth options are identical when normalized by dollar values,
which provides a remarkable simplification. Second, since ν1 > 1 and
V iC(Kt,Xt) < 0, rival growth options always reduce risk, independent of
whether the equilibrium is simultaneous, pre-emptive, or non-preemptive.
Third, when V iO(Kt,Xt) > 0, which always holds for non-preemptive equi-
libria, own-firm expansion options increase risk.

Perhaps most importantly, only in the simultaneous equilibrium can we
uniquely sign the sum V iO(Kt,Xt) + V

i
C(Kt,Xt) at all points in the state

space. In particular, in a simultaneous exercise equilibrium this sum is
guaranteed to be positive, and hence the cumulative effect of growth op-
tions is always to increase risk, consistent with the results in Aguerrevere
(2009). By contrast, in a leader-follower equilibrium the cumulative effect
of industry growth options V iO(Kt,Xt) + V

i
C(Kt,Xt) can generally not be

uniquely signed, implying that growth options will alternately increase or
decrease risk for a given firm at different points in the state space.

Figure 5 displays the evolution of risk in a growing industry for all three
different types of equilibria. In the four panels of the figure, we hold all
parameters constant except the expansion cost asymmetry which is set to
2.0 in Panel A, 1.3 in Panel B, 1.1 in Panel C, and 1.0 in Panel D. As a
consequence, in Panels A and B the equilibrium type is non-preemptive, in
Panel C the equilibrium is preemptive, and in panel D the equilibrium is
simultaneous. The equilibrium types are consistent with Figure 2 where
the demand elasticity is set to the intermediate value γ = 0.5.

Moving from Panel A to B by decreasing the adjustment cost asymmetry
ρ, the follower trigger moves forward closer to the leader trigger, but has no
strategic impact on the leader decision of when to exercise, consistent with
the nature of the non-preemptive equilibrium. However, in Panel C, the
follower trigger moves close enough to the leader trigger that the follower
would have an incentive to strategically preempt the leader prior to its non-
preemptive trigger. As a consequence, the leader must itself preempt the
preemptive investment of the follower, by moving forward its trigger to X1

LP .
Finally, in Panel D the firms are sufficiently symmetric and the option value
of waiting relative to acting as a leader sufficiently large that a simultaneous
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exercise equilibrium can be sustained.
The risk dynamics of the two firms in the leader-follower equilibria in

Panels A-C differ markedly from the simultaneous exercise equilibrium in
Panel D. For a leader-follower equilibrium, prior to the leader’s exercise the
leader’s risk increases more steeply than the follower. Immediately upon
the exercise of the leader growth option, the leader risk drops discretely
and the follower risk jumps upwards, reversing the risk-ordering of the two
firms. The two firms’ risk loadings continue to move apart until the follower
growth option is exercised, and no growth options remain. By contrast,
under simultaneous exercise in Panel D, the risk of both firms increases
equally and always is above one until the exercise trigger and then drops to
the level of the cash flow beta.

The dynamics of risk in a leader-follower equilibrium therefore differ dra-
matically from the simultaneous exercise case. Proposition 4 states that the
region of existence of the simultaneous equilibrium can be small depending
on parameter values, and in many cases the simultaneous exercise equilib-
rium does not exist even for perfectly symmetric firms. These results imply
that leader-follower equilibria are important and merit independent study.
Our theoretical investigation shows that growth options have opposite ef-
fects on own firm and rival risk. Hence, the common practice of proxying for
a firm’s risk using industry peer betas may not be appropriate when growth
options are an important component of firm values, and this theoretical
implication can be tested in future empirical work.

4.2 Equilibrium Exercise of Contraction Options

We now assume that each firm has a single contraction option. Capital
adjustment costs are specified by

Λ1 ≡

⎡⎢⎣ 0 −∞ −∞
S 0 −∞
−∞ −∞ 0

⎤⎥⎦ Λ2 ≡

⎡⎢⎣ 0 −∞ −∞
ρS 0 −∞
−∞ −∞ 0

⎤⎥⎦ ,
where 0 < ρ ≤ 1 so that firm 1 has the high and firm 2 the low salvage value.
This implies that firm 1 has an incentive to contract earlier. Our interest
again lies in equilibrium play of the two rivals, and we focus on pure strategy
equilibria only. In contrast to the case of expansion options, leader-follower
exercise is the unique equilibrium, following Murto (2004).
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Proposition 8. For every 0 < ρ < 1 there exists a unique MPE of the
contraction game in which the high salvage value firm acts as the leader
with trigger X1

C and the low salvage value firm acts as the follower with
trigger X2

C < X1
C. If ρ = 1, there exist two pure strategy MPE, one in

which firm 1 acts as the leader and firm 2 as the follower, and in the other
firm 2 acts as the leader and firm 1 as the follower. No equilibrium exists
with positive probability of simultaneous contraction.

We note that preemption does not play a role in contractions because any
rival reduction in output increases rather than reduces firm value. Hence,
for symmetric firms the follower value exceeds the leader value.

We again assume both firms initially have capacity κ1. The leader con-
tracts first at the demand trigger X1

C , and the follower contracts at the
trigger X2

C < X
1
C . We then show:

Proposition 9. The leader’s value function V 1(Kt,Xt) is equal to⎧⎪⎪⎨⎪⎪⎩
R111Xt

δ − f1
r +

f1−f0+rS
r(1−ν2)

³
Xt
X1
C

´ν2
+
X2
C
δ

£
R100 −R101

¤ ³
Xt
X2
C

´ν2
Xt > X

1
C ,

R101Xt
δ − f0

r +
X2
C
δ

£
R100 −R101

¤ ³
Xt
X2
C

´ν2
X2
C ≤ Xt ≤ X1

C ,

R100Xt
δ − f0

r Xt < X
2
C ,

and the followers value V 2(Kt,Xt) is⎧⎪⎪⎨⎪⎪⎩
R211Xt

δ − f1
r +

f1−f0+rρS
r(1−ν2)

³
Xt
X2
C

´ν2
+

X1
C
δ

£
R201 −R211
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Xt
X1
C

´ν2
Xt ≥ X1

C ,

R201Xt
δ − f1

r +
f1−f0+rρS
r(1−ν2)

³
Xt
X2
C

´ν2
X2
C ≤ Xt ≤ X1

C ,

R200Xt
δ − f0

r Xt < X
2
C .

with the contraction triggers X1
C > X

2
C > 0 given in the Appendix.

Rewriting the contraction triggers and substituting into the value functions
gives

V 1(Kt,Xt) =
R111
δ
Xt −

f1
r| {z }

assets in place

+
X1
C

δν2
[R101 −R111]

µ
Xt
X1
C

¶ν2

| {z }
contraction option

+
X2
C

δ

£
R100 −R101

¤µ Xt
X2
C

¶ν2

| {z }
value adjustment

.
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and

V 2(Kt,Xt) =
R211
δ
Xt −

f1
r| {z }

assets in place

+
X2
C

δν2
[R200 −R201]

µ
Xt
X2
C

¶ν2

| {z }
contraction option

+
X1
C

δ

£
R201 −R211

¤µ Xt
X1
C

¶ν2

| {z }
value adjustment

.

The value functions are composed of the growing perpetuity value of assets
net of fixed costs assuming a constant industry structure, the perpetuity
value of fixed costs, and the own-firm and rival option effects. The own-firm
contraction option corresponds to a put and has positive value, consistent
with the product of ν2 < 0 and [R111−R101] < 0. The rival value adjustment
also has a positive value, consistent with the increased market price induced
by lower industry output.

As in the expansion case, the value functions can be written as:

V i(Kt,Xt) = V
i
A(Kt,Xt) + V

i
F (Kt,Xt) + V

i
O(Kt,Xt) + V

i
C(Kt,Xt).

In contrast to expansion options, the rival effect for downsizing is positive
V iC(Kt,Xt) > 0.

The risk dynamics of the two firms follows from the valuation equations.

Proposition 10. Systematic firm risks for both firms are

βi(t) = 1 +
V iO(Kt,Xt) + V

i
C(Kt,Xt)

V i(Kt,Xt)
(ν2 − 1) +

fk/r

V i(Kt,Xt)
,

for all industry states Kt, where ν2 < 0 and V iO(Kt,Xt), V
i
C(Kt,Xt) > 0.

As in the case of expansion options, the own-firm and rival values of contrac-
tions appear additively in the numerator of the second term, again implying
that own and competitor contraction options have the same risk implications
when normalized by dollar values. In contrast to the case of expansion op-
tions the signs of V iO and V

i
C are always positive, which combined with ν2 < 0

implies that contraction options, whether own or rival, always reduce risk.
Figure 6 summarizes the risk dynamics in equilibrium for contraction

options. In Panel A the degree of salvage value asymmetry is large with ρ =
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0.1, and in the remaining three panels ρ progressively increases until reaching
ρ = 0.99999. As ρ increases and the follower salvage value increases, its
contraction trigger moves closer to the leader’s. However, unlike in the
expansion case, the increase in the follower trigger has no strategic impact
on the leader’s exercise, which always occurs at the same level of demand.
We also note that even in the case where the salvage value is almost one,
the difference in the leader and follower triggers is discrete. This is because
the exit of the leader raises the incentives of the follower to delay, so that
the two triggers cannot occur arbitrarily close together.

The risk dynamics of the two firms in the contraction equilibrium differ,
with each firm’s risk dropping faster prior to its own capacity reduction.
However, consistent with Proposition 10, both contraction options reduce
risk for both firms, and the firms’ risks always move in the same direction.

5 Conclusion

We study risk dynamics in a duopoly where firms possess real options to
expand or contract capacity, with adjustment costs that potentially differ
across firms. Prior research derives required returns in a variety of product
market settings: monopoly, where own-firm real options and operating lever-
age impact returns (Carlson, Fisher and Giammarino, 2004, 2006; Cooper
2006); perfect competition with identical firms, where only industry effects
are present (Kogan, 2004); perfect competition with heterogeneous firms,
where option values are zero and differences in cost structure drive expected
returns (Zhang, 2005); and oligopoly, where both own and rival real op-
tions exist but their distinct impacts are not apparent due to simultaneous
exercise (Aguerrevere, 2009). In the duopoly setting that we analyze, a
variety of leader-follower equilibria exist in which a firm and its rival may
exercise growth and contraction opportunities at separate times, allowing
identification of the distinct risk impacts of own and competitor growth and
contraction options. Non-simultaneous exercise can be the unique equilib-
rium outcome even when exogenous asymmetries are arbitrarily small or
zero, and the risk dynamics that emerge in leader-follower equilibria differ
substantially from simultaneous move benchmarks.

We find that a competitor’s options to adjust capacity, whether expan-
sion or contraction, reduce own-firm risk through a simple hedging chan-
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nel. Intuitively, product market improvements increase the probability of
near-term rival expansion, which provides an offsetting decrease in own-firm
value. Conversely, negative demand shocks induce competitor contraction,
reducing the decline in own-firm value. As a consequence of the risk-reducing
effect of competitor real options, own and rival risk tend to move together
in contractions, but in opposite directions during expansions.

Financial analysts commonly estimate the required return of a product
or corporation using not only the historical risk of the firm, but also its
industry rivals, as recommended by standard corporate finance textbooks.
Our results suggest that using industry peer betas to proxy for own-firm
risk may work well in certain environments, but not in others, in particular
where growth options are an important component of firm value. Our study
thus highlights the importance of rival real options as an independent source
of firm risk dynamics, and provides new theoretical predictions that can be
tested in future empirical work.
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Appendix

A Proofs

A.1 Proof of Proposition One

To derive the value of the flexible firm we assume that there exist two traded
assets that can be used to hedge industry demand uncertainty. Let Bt denote
the price of a riskless bond with dynamics dBt = rBtdt where r > 0 is the
constant riskless rate of interest, and let St be the price of a risky asset. The
price dynamics of the risky asset is given by

dSt = μStdt+ σStdWt.

The risky asset St and the industry demand shock Xt are perfectly corre-
lated. Hence, we can use the securities Bt and St, to construct a portfolio of
the bond and the asset St that perfectly replicates the industry shocks Xt
and derive its risk neutral measure. Demand dynamics under risk neutral
measure are given by

dXt = (r − δ)Xtdt+ σXtdŴt, (7)

where r > δ ≡ μ− g > 0. All the valuations in this paper are based on the
risk neutral dynamics (7).
The continuation value of the flexible firm satisfies the valuation equation

1

2
σ2X2V 1XX + (r − δ)XV 1X − rV 1 +XR111 − f1 = 0. (8)

with the boundary conditions

V 1(XE) =
R121XE

δ
− I − f2

r

V 1(XC) =
R101XC

δ
+ S − f0

r

V 1X(XE) =
R121
δ

V 1X(XC) =
R101
δ
.

The first two equations are the value matching conditions and specify that
the option value at the critical boundaries are exactly equal to the present
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value of the incremental revenues net of adjustment costs. The last two
equations are the smooth pasting conditions which are necessary for value
maximization. This system of equations has no convenient analytical solu-
tion for XE and XC due to its nonlinearity.
The solution to equation (8) is given by

V 1(Kt,Xt) =
R111Xt

δ
− f1
r
+B11X

ν1
t +B12X

ν2
t ,

where B11 and B
1
2 solve

(1− ν1)B
1
1X

ν1
E + (1− ν2)B

1
2X

ν2
E = −I − f2 − f1

r
,

(1− ν1)B
1
1X

ν1
C + (1− ν2)B

1
2X

ν2
C = S − f0 − f1

r
. (9)

The constants ν1 > 1 and v2 < 0 are the positive and negative roots to the
characteristic equation

1

2
σ2ν(ν − 1) + (r − δ)ν − r = 0,

and satisfy

ν1,2 =
1

2
− r − δ

σ2
±

sµ
1

2
− r − δ

σ2

¶2
+
2r

σ2
.

For given positive values of XE and XC the solution of (9) satisfies B11 , B
1
2 >

0. The values XE < XC can be derived numerically.

A.2 Proof of Proposition Two

The continuation value of the inflexible firm satisfies the valuation equation

1

2
σ2X2V 2XX + (r − δ)XV 2X − rV 2 +XR211 − f1 = 0, (10)

with two boundary conditions

V 2(XE) =
R221XE

δ
− f1
r

V 2(XC) =
R201XC

δ
− f1
r
,
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for given trigger levels XE and XC . The boundary conditions are two value
matching conditions. Solving the valuation equation using the value match-
ing conditions results in the value of the flexible firm given by

V 2(Kt,Xt) =
R211Xt

δ
− f1
r
+B21X

ν1
t +B22X

ν2
t ,

where B21 and B
2
2 are the solutions to the equations

B21X
ν1
E +B22X

ν2
E =

R221 −R211
δ

XE −
f2 − f1
r

B21X
ν1
C +B22X

ν2
C =

R201 −R211
δ

XC −
f0 − f1
r

.

For this equation system it is easy to show that B12 < 0 and B
2
2 > 0.

A.3 Proof of Proposition Three

Following the arguments in Carlson, Fisher, and Giammarino (2004) betas
are given by

βi(Kt,Xt) =
∂V i(K,X)

∂X

X

V (K,X)
.

Taking partial derivatives and substituting firm values from Propositions 1
and 2 into this expression implies the result.

A.4 Proof of Proposition Four

We prove existence of the non-preemptive, preemptive, and simultaneous
move equilibria and provide conditions when each holds. We also char-
acterize a region for which only a mixed strategy equilibrium is possible.
The arguments build on Pawlina and Kort (2006)16 by permitting operating
leverage and accommodating the case where ρ = 1 so that firms 1 and 2
are identical ex ante. We also provide valuation equations for all industry
stages juvenile, adolescent, and mature.

The structure of the proof is to first provide the value functions of firm
1 and 2 under different strategies:
16See also the paper by Mason and Weeds (2008) in which non-preemptive, preemptive

and simultaneous-move equilibria in a simple real option game are discussed.
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i) Nonpreemptive leader-follower: firm 1 expands before firm 2 at a de-
mand level that satisfies firm 1’s smooth pasting condition.

ii) Preemptive leader-follower: firm 1 expands before firm 2 but at a de-
mand level forced by firm 2’s preemption threat, hence firm 1’s exercise
not satisfying it’s own smooth pasting condition.

iii) Simultaneous move: both firms expand simultaneously.

iv) Off-equilibrium: firm 2 leads.

Based on the value functions derived in Part 1, we consider the conditions
required to support a simultaneous move equilibrium in Part 2, a preemptive
equilibrium in Part 3, and a random move equilibrium in Part 4.
Part 1: Value function calculations
i) Non-preemptive leader-follower: In this case the value function of firm 1
satisfies

1

2
σ2X2V 1XX + (r − δ)XV 1X − rV 1 +XR111 − f1 = 0,

with the boundary conditions

V 1(X1
L) =

R121X
1
L

δ
− f1
r
− I +B

¡
X1
L

¢ν1
V 1X(X

1
L) =

R121
δ
+Bν1

¡
X1
L

¢ν1−1 (11)

V 1(X2
F ) =

R122X
2
F

δ
− f2
r

where X1
L is the exercise trigger optimally set by firm 1, X2

F > X1
L is the

trigger level when the follower exercises the option, B is a constant that is
determined by the value matching. The solution is

V 1L (X) =
R111Xt

δ
− f1
r
+
(R121 −R111)X1

L

δν1

µ
X

X1
L

¶ν1

+
(R122 −R121)X2

F

δ

µ
X

X2
F

¶ν1

, (12)

where

X1
L = X

1
LN =

ν1
ν1 − 1

δ(f2 − f1 + rI)
r(R121 −R111)

. (13)
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The follower’s value function must satisfy

1

2
σ2X2V 2XX + (r − δ)XV 2X − rV 2 +XR211 − f1 = 0,

with the boundary conditions

V 2(X2
F ) =

R222X
2
F

δ
− f2
r
− ρI,

V 2X(X
2
F ) =

R222
δ
, (14)

V 2(X1
L) =

R221X
1
L

δ
− f1
r
+D

¡
X1
L

¢ν1 ,
where D and C are constants. This results in the follower’s value function

V 2F (X) =
R211Xt

δ
− f1
r
+
(R221 −R211)X1

L

δ

µ
X

X1
L

¶ν1

+
(R222 −R221)X2

F

δν1

µ
X

X2
F

¶ν1

, (15)

where

X2
F =

ν1
ν1 − 1

δ(f2 − f1 + rρI)
r(R222 −R221)

.

ii) Preemptive leader follower: In this case firm 1 chooses X1
L that does not

satisfy the smooth pasting condition (11), and the corresponding firm value
becomes

V 1(X) =
R111
δ
X − f1

r
+
(R122 −R121)X2

F

δ

µ
X

X2
F

¶ν1

+

∙
(R121 −R111)X1

L

δ
− f2 − f1 + rI

r

¸µ
X

X1
L

¶ν1

. (16)

iii) Simultaneous move: If both firms exercise simultaneously at the trigger
level Xi

S the corresponding value functions are given by

V iS(X) =
Ri11
δ
X − f1

r
+
(f2 − f1 + rI i)
r(ν1 − 1)

µ
X

Xi
S

¶ν1

(17)

and the trigger levels

Xi
S =

ν1
ν1 − 1

δ(f2 − f1 + rI i)
r(Ri22 −Ri11)

.
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iv) Off-equilibrium, firm 2 leads: If firm 2 does not act as the follower and
instead exercises as the leader its value function is

V 2L (X) =
R211
δ
X − f1

r
+
(R212 −R211)X2

L

δν1

µ
X

X2
L

¶ν1

+
(R222 −R212)X1

F

δ

µ
X

X1
F

¶ν1

(18)

with X2
L as the leader’s trigger for firm 2 and X1

F the follower’s trigger for
firm 1.
Part 2: Conditions for simultaneous equilibrium: Since I1 = I <

ρI = I2 the only candidate for a simultaneous equilibrium is trigger level
X1
S < X

2
S. For a simultaneous equilibrium to occur (i) the value of firm 1

being the leader has to be smaller than moving simultaneously with firm 2,
and (ii) firm 2 has to find it profitable to move simultaneously with firm 1
and not to wait and act as the follower. The difference between the firm
1 leader value assuming immediate exercise and the value from waiting for
simultaneous exercise is given by

∆(X, ρ) =
(R121 −R111)X

δ
− f2 − f1 + rI

r
+
(R122 −R121)X2

F

δ

µ
X

X2
F

¶ν1

−(R
1
22 −R111)X1

S

δν1

µ
X

X1
S

¶ν1

.

Note that the leader’s value function immediately after capacity expansion
is increasing (in the relevant range) and strictly concave in X while the value
function for simultaneous exercise is strictly convex. It can be shown that
there exists X∗∗ and ρ∗∗ such that ∆(X∗∗, ρ∗∗) = 0 and ∆X(X∗∗, ρ∗∗) = 0.
Pawlina and Kort (2006) show that this implies for all ρ < ρ∗∗ that both
conditions (i) and (ii) hold and a simultaneous equilibrium exists. In case
ρ∗∗ < 1 a simultaneous equilibrium is not possible.
Part 3: Conditions for preemptive equilibrium: In the preceding
analysis we have shown that if the investment costs are not too different
equilibrium play results in simultaneous investment. Now we focus on iden-
tifying a cost difference that does make it unattractive for firm 2 to act as
the leader. The value function of firm 2 when it acts as the follower is given
by (15) and when it acts as the leader is given by (18). In a preemptive
equilibrium, firm 1 is forced to expand just before the first instant at which
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firm 2 would be indifferent between acting as the leader or acting as the
follower with firm 1 exercising immediately. The difference between firm
2’s value function as a leader and its value as a follower after a preemptive
expansion by the leader is

G(X, ρ) ≡ (R212 −R221)X
δ

− (f2 − f1 + ρrI)

r
+
(R222 −R212)X1

F

δ

µ
X

X1
F

¶ν1

−(R
2
22 −R221)X2

F

δν1

µ
X

X2
F

¶ν1

= V 2L (X)− V 2F (X),

where X1
F is the trigger level when firm 1 acts as the follower. Firm 2 does

not have an incentive to become the leader if and only if G(X, ρ) ≤ 0 for
all X ≤ X2

F . Given the strict concavity of the value function when firm 2
acts as the leader (18) and the strict convexity when it acts as the follower
(15), we need to identify a set of parameters such the convex followers value
function is tangent to the concave leader’s value function. This holds true
if only if we find (X∗, ρ∗) such that

G(X∗, ρ∗) = 0, (19)
∂G(X∗, ρ∗)

∂X
= 0. (20)

It is straight forward to show that (19) and (20) are satisfied if and only if

X∗ =
ν1

ν1 − 1
δ(f2 − f1 + rρ∗I)
r[R212 −R221]

. (21)

Equations (21) and (19) identify ρ∗. At the point (X∗, ρ∗) the value functions
of firm 2 acting as the follower is tangent to the value function of firm 2 acting
as the leader. Hence, for all ρ ≥ ρ∗ the follower does not have an incentive
to become the leader and the equilibrium outcome is that firm 1 acts as
the leader and firm 2 acts as the follower. This implies a non-preemptive
sequential equilibrium as the unique pure strategy MPE.
For ρ < ρ∗ firm 2 has an incentive to become the leader. This incentive
exists for all values of X in the interval [X1

LP ,X
2
F ], where X

1
LP is defined by

G(X1
LP , ρ) = 0,

i.e., the value at which firm 2 is indifferent between being the leader or
being the follower. If the leader’s investment trigger satisfies X1

L < X
1
LP the
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follower value of firm 2 exceeds its leader value and firm 2 does not have an
incentive to change its follower role. If, however, X1

L > X1
LP the follower

has an incentive to preempt the leader marginally which in turn causes the
leader to choose X1

LP as the investment trigger. With this trigger firm 1
acts as the leader while it is optimal for firm 2 to act as the follower.
Part 4: Random leader follower equilibrium: If ρ = 1 and ρ∗∗ < 1,
none of the pure strategy equilibria above are possible. To define a mixed
strategy equilibrium requires an expansion of the strategy space following
Fudenberg and Tirole (1985) and Huisman and Kort (1999). In such a mixed
strategy equilibrium the leader is chosen randomly at the trigger level X1

LP

while the other firm acts as the follower.

A.5 Proof of Proposition Five

The leader’s value function in case of a non-preemptive equilibrium is given
by (12) while in case of a preemptive equilibrium when the expansion trigger
does not satisfy the smooth pasting condition it is given by (16). In both
cases the follower’s value function is given by (15).

A.6 Proof of Proposition Six

In the case where both firms simultaneously invest their value functions are
given by (17).

A.7 Proof of Proposition Seven

Follows immediately from the firms’ value functions and the definition of
beta.

A.8 Proof of Proposition Eight

The value function of firm 2 acting as a follower is

V 2F (Kt,Xt) =

⎧⎨⎩
R201Xt

δ − f1
r +

f1−f0+rρS
r(1−ν2)

³
Xt
X2
C

´ν2
Xt ≥ X2

C

R200Xt
δ − f0

r + ρS Xt ≤ X2
C ,

(22)

where

X2
C =

ν2δ(f1 − f0 + rρS)
(1− ν2)r[R200 −R201]

(23)
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is the contraction trigger when firm 2 acts as the follower. Now assume,
instead, that firm 2 having the smaller salvage value acts as the leader. The
value function of firm 2 at the time when it contracts as the leader is

V 2L (Kt,Xt) =

⎧⎨⎩
R210Xt

δ − f0
r + ρS +

X1,F
C [R200−R210]

δ

³
Xt
X2
C

´ν2
Xt ≥ X1,F

C

R200Xt
δ − f0

r + ρS Xt ≤ X1,F
C ,

(24)
where

X1,F
C =

ν2δ(f1 − f0 + rS)
(1− ν2)r[R100 −R110]

. (25)

is the trigger when firm 1 contracts as the follower and firm 2 acts as the
leader. Given our assumptions on the revenue functions it follows that trig-
ger (25) is strictly greater than trigger (23) for 0 < ρ < 1. From this
property and the value functions (22) and (24) it can be shown that

G(Xt, ρ) ≡ V 2L (Xt, ρ)− V 2F (Xt, ρ) ≤ 0

holds for all Xt. Hence, firm 2 never has an incentive to become the leader.
Therefore sequential exercise of contraction options is the unique pure strat-
egy MPE ρ < 1. In case of ρ = 1 and the two firms have symmetric salvage
values we can use Proposition 3 and 4 in Murto (2004) that establishes the
existence of two pure strategy MPE.

A.9 Proof of Propositions Nine

The derivation of the leader and the follower value functions follows the
same arguments used in Proposition 4 with the difference that instead of a
call the contraction option corresponds to a put option. The leader’s value
function satisfies

1

2
σ2X2V 1XX + (r − δ)XV 1X − rV 1 +XR111 − f1 = 0,

with the boundary conditions

V 1(X1
C) =

R101X
1
C

δ
− f0
r
+ S +B

¡
X1
C

¢ν2 ,
V 1X(X

1
C) =

R101
δ
+Bν2

¡
X1
C

¢ν2−1 ,
V 1(X2

C) =
R100X

2
C

δ
− f0
r
,
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resulting in the value function stated in the proposition. The leader’s con-
traction trigger is given by

X1
C =

ν2δ(f1 − f0 + rS)
(1− ν2)r[R101 −R111]

.

The follower’s value function satisfies

1

2
σ2X2V 2XX + (r − δ)XV 2X − rV 2 +XR211 − f1 = 0,

with the boundary conditions

V 2(X2
C) =

R200X
2
C

δ
− f0
r
+ ρS,

V 2X(X
2
C) =

R200
δ
,

V 2(X1
C) =

R201X
1
C

δ
− f1
r
+D

¡
X1
C

¢ν2 ,
that results in the value function stated in the proposition. The follower’s
trigger is given by

X2
C =

ν2δ(f1 − f0 + rρS)
(1− ν2)r[R200 −R201]

.

A.10 Proof of Proposition Ten

Follows immediately by using the value functions stated in Proposition 9
and the the definition of beta.
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Figure 1: The hedging effect of a rival real option. The figure illustrates price responses to demand
shocks with and without an expansion response by a rival. With current industry output fixed at Q1 an upward
shift in demand from D to D′ will result in an increase in the product price from P1 to P ∗. If demand crosses the
threshold for investment by the rival, an increase in industry output to Q2 dampens the price response, so that prices
increase only to P2.
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Figure 2: Risk dynamics of the flexible and inflexible firm. This figure represents the relationship between
the level of the demand state Xt and the systematic risk β of firms within an industry. The solid curve illustrates risk
dynamics for the flexible firm. Flexible firm risk derives from assets in place, a contraction option, and an expansion
option when Xc < Xt < Xe and from assets in place alone otherwise. The risk-reducing effect of the contraction
option is largest (smallest) and the risk-increasing effect of the expansion option is smallest (largest) when Xt = Xc

(Xt = Xe). Exercising either option causes a discontinuous change in risk to β = 1. The dashed curve illustrates
risk dynamics for the inflexible firm. Rival options unambiguously decrease inflexible firm risk, so that the inflexible
firm’s beta is relatively low at both of the critical points Xc and Xe. The parameter values are γ = 0.5, σ = 0.2,
q0 = 1, q1 = 2, q2 = 10, f0 = f1 = f2 = 0, rf = 0.05, δ = 0.03, S = 50, and I = 500.
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Figure 3: Timeline of the duopoly investment game. This figure illustrates the endogenous timing of industry
expansions in a leader-follower equilibrium.
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Figure 4: Equilibrium regions in the expansion game. This figure shows how inverse demand elasticity γ
and investment cost differentials ρ relate to the equilibrium predicted by the expansion game. The simultaneous-
move equilibrium occurs in the region 1 ≤ ρ ≤ ρ∗∗, the preemptive leader-follower equilibrium exists in the region
max{ρ∗∗, 1} < ρ ≤ ρ∗, and the non-preemptive leader-follower equilibrium exists in the region ρ ≥ max{ρ∗, ρ∗∗}.
The random-leader equilibrium is the only possibility when ρ = 1 and ρ∗∗ < 1, indicated by asterisks. The parameter
values used for the figure are σ = 0.2, q1 = 2, q2 = 10, f1 = f2 = 0, rf = 0.05, δ = 0.03, and I = 500.
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0.5

1

1.5

β

B. Non−preemptive leader−follower equilibrium, ρ = 1.3

0.5

1

1.5

β

C. Preemptive investment / entry deterrence equilibrium, ρ = 1.1

0.5

1

1.5

ln(X
t
)

β

D. Simultaneous investment equilibrium, ρ = 1

Figure 5: Risk dynamics in expansions. This figure illustrates leader (dashed line) and follower (solid line)
risk dynamics in the expansion game. In Panels A and B the equilibrium is non-preemptive leader-follower, in Panel
C it is preemptive leader-follower, and in Panel D it is simultaneous. In Panels A-C, leader risk is above (below)
follower risk prior to (following) leader expansion. Leader and follower firm risk dynamics are identical only in the
simultaneous equilibrium of Panel D. The parameter values are γ = 0.5, σ = 0.2, q1 = 2, q2 = 10, f1 = f2 = 0,
rf = 0.05, δ = 0.03, and I = 500.
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Figure 6: Risk dynamics in contractions. This figure illustrates leader (dashed line) and follower (solid line)
risk dynamics in the contraction game for various values of ρ. Leader risk is below (above) follower risk prior to
(following) leader contraction. The parameter values are γ = 0.5, σ = 0.2, q0 = 1, q1 = 2, f0 = f1 == 0, rf = 0.05,
δ = 0.03, and S = 50.
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